Skip to main content
Log in

Effects of Guanine Nucleotides on Glutamate-Induced Chemiluminescence in Rat Hippocampal Slices Submitted to Hypoxia

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate significantly increased levels of spontaneous chemiluminescence (CL) in rat hippocampal slices incubated under hypoxic conditions. Although it has been previously shown that guanine nucleotides (GN) displace glutamate from several of its receptors, in our study only GMP, as well as the glutamate antagonist MK-801, was able to reverse the increase in CL provoked by glutamate. On the other hand, not only GTP or Gpp(NH)p failed to reverse the action of glutamate, but they increased CL production like glutamate. This effect of GTP/Gpp(NH)p was also reversed by GMP. We concluded that, under neurotoxic conditions, GMP acted as an antagonist and GTP or Gpp(NH)p acted as agonists of glutamate. These results reinforced the evidence of the existence of extracellular site(s) for GN and indicated a possible role for GN in excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. McEntee, W. J., and Crook, T. H. 1993. Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology. 111:391-401.

    PubMed  Google Scholar 

  2. Hollmann, M., and Heinemann, S. 1994. Cloned glutamate receptors. Annu. Rev. Neurosci. 17:31-108.

    PubMed  Google Scholar 

  3. Lipton, S. A., and Rosenberg, P. A. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. New Eng. J. Med. 330:613-622.

    Article  PubMed  Google Scholar 

  4. Goldberg, M. P., and Choi, D. W. 1993. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J. Neurosci. 13:3510-3524.

    PubMed  Google Scholar 

  5. Stoltenburg-Didinger, G. 1994. Neuropathology of the hippocampus and its suscebility to neurotoxic insult. Neurotoxicology. 15:445-450.

    PubMed  Google Scholar 

  6. Dawson, V. L., and Dawson, T. M. 1996. Free radicals and neuronal death. Cell Death and Differentiation. 3:71-78.

    Google Scholar 

  7. Coyle, J. T., and Puttfarcken, P. 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 262:689-695.

    PubMed  Google Scholar 

  8. Reynolds, I. J., and Hastings, T. G. 1995. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 15:3318-3327.

    PubMed  Google Scholar 

  9. Schultz, J. B., Henshaw, D. R., Siwek, D., Jenkins, B. G., Ferrante, R. J., Cipolloni, P. B., Kowall, N. W., Rosen, B. R., and Beal, M. F. 1995. Involvement of free radicals in excitotoxicity in vivo. J. Neurochem. 64:2239-2247.

    PubMed  Google Scholar 

  10. Reiber, H., Martens, U., Prall, F., and Uhr, M. 1994. Relevance of endogenous ascorbate and tocopherol for brain cell vitality indicated by photon emission. J. Neurochem. 62:608-614.

    PubMed  Google Scholar 

  11. Isojima, Y., Isoshima, T., Nagai, K., Kikuchi, K., and Nakagawa, H. 1995. Ultraweak biochemiluminescence detected from rat hippocampal slices. NeuroReport. 6:658-660.

    PubMed  Google Scholar 

  12. Hepler, J. R., and Gilman, A. G. 1992. G proteins. TIBS. 17:383-387.

    PubMed  Google Scholar 

  13. Monahan, J. B., Hood, W. F., Michel, J., and Compton, R. P. 1988. Effects of guanine nucleotides NMDA-receptor-ligand interactions. Molec. Pharmacol. 34:111-116.

    Google Scholar 

  14. Baron, B. N., Dudley, M. W., McCarty, D. R., Miller, F. P., Reynolds, I. J., and Schmidt, C. J. 1989. Guanine nucleotides are competitive inhibitors of NMDA at its receptor site both in vitro and in vivo. J. Pharmacol. Exp. Ther. 250:162-169.

    PubMed  Google Scholar 

  15. Paz, M. M., Ramos, M., Ramirez, G., and Souza, D. 1994. Differential effects of guanine nucleotides on kainic acid binding and on adenylate cyclase. FEBS lett. 355:205-208.

    PubMed  Google Scholar 

  16. Rubin, M. A., Medeiros, A. C., Rocha, P. C. B., Livi, C. B., Ramirez, G., and Souza, D. O. 1997. Effect of guanine nucleotides on [3H]glutamate binding and on adenylate cyclase activity in rat brain membranes. Neurochem. Res. 22:181-187.

    PubMed  Google Scholar 

  17. Migani, P., Fiorini, R., Ferreti, E., Manini, E., Chimichi, S., and Moneti, G. 1997. Role of guanine nucleotides as endogenous ligands of a kainic acid binding site population in the mammalian cerebellum. J. Neurochem. 68:1648-1654.

    PubMed  Google Scholar 

  18. Ramos, M., Souza, D. O., and Ramirez, G. 1997. Specific binding of [3H]Gpp(NH)p to extracellular membrane receptors in chick cerebellum: possible involvement of kainic acid receptors. FEBS lett. 406:114-118.

    PubMed  Google Scholar 

  19. Budson, A. E., Jackson, P. S., and Lipton, S. A. 1991. GDPbS antagonizes whole-cell current responses to excitatory amino acids. Brain Res. 548:348-364.

    Google Scholar 

  20. Tasca, C. I., Wofchuk, S. T., Souza, D. O., Ramirez, G., and Rodnight, R. 1995. Guanine nucleotides inhibit the stimulation of GFAP phosphorylation by glutamate. NeuroReport. 6:249-252.

    PubMed  Google Scholar 

  21. Paas, Y., Deville-Thiéry, A., Changeux, J. P., Medevielle, F., and Tcheiberg, V. 1996. Identification of an extracellular motif involved in the binding of guanine nucleotides by a glutamate receptor. EMBO J. 15:1548-1556.

    PubMed  Google Scholar 

  22. Dugan, L. L., and Choi, D. W. 1994. Excitotoxicity, free radicals and cell membrane changes. Ann. Neurol. 35:S17-S21.

    PubMed  Google Scholar 

  23. Kass, I. S., and Lipton, P. 1982. Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J. Physiol. 332:459-472.

    PubMed  Google Scholar 

  24. Tasca, C. I., Vendite, D., Martini, L. H., Cardoso, L. F., and Souza, D. O. Modulation of adenosine-induced cAMP accumulation via metabotropic glutamate receptors in chick optic tectum. Neurochem. Res. 20:1033-1039.

  25. Lowry, O. H., Rosenbrough, N. J., Far, A. L., and Randall, R. J. 1951. Protein measurement with the Folin-Phenol reagent. J. Biol. Chem. 193:265-275.

    PubMed  Google Scholar 

  26. Dykens, J. A., Stern, A., and Trenkner, E. 1987. Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J. Neurochem. 49:1222-1228.

    PubMed  Google Scholar 

  27. Lafon-Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J. 1993. NMDA-dependent superoxide production and neurotoxicity. Nature. 364:535-537.

    PubMed  Google Scholar 

  28. Yang, C.-S., Tsai, P-J., Lin, N.-N., Liu, L., and Kuo, J.-S. 1995. Elevated extracellular glutamate levels increased the formation of hydroxil radicals in the striatum of anesthetized rat. Free Rad. Biol. Med. 19:453-459.

    PubMed  Google Scholar 

  29. Reiber, H. 1989. Discrimination between different types of low-level luminescence in mammalian cells: the biophysical radiation. J. Biolumin. Chemilumin. 4:245-248.

    PubMed  Google Scholar 

  30. Arisi, A. C., Simizu, K., Kogake, M., Bainy, A. C., Silva, M. A., Barros, S. B., Boveris, A., Videla, L. A., and Junqueira, V. B. 1994. Brain and liver lipid peroxidation levels following acute and short-term lindane administration. Toxicol. lett. 74:61-8.

    PubMed  Google Scholar 

  31. Ginsburg, I., Misgav, R., Gibbs, D. F., Varani, J., and Kohen, R. 1993. Chemiluminescence in activated human neutrophils: role of buffers and scavengers. Inflammation. 17:227-243.

    PubMed  Google Scholar 

  32. Llesuy, S., Evelson, P., Gonzales-Flecha, B., Peralta, J., Carreas, M. C., Poderoso, J. J., and Boveris, A. 1994. Oxidative stress in muscle and liver of rats with septic syndrome. Free Radical Biol. Med. 16:445-451.

    Google Scholar 

  33. Henry, T. D., Archer, S. L., Nelson, D., Weir, E. K., and From, A. H. L. 1993. Postischemic oxygen radical production varies with duration of ischemia. Am. J. Physiol. 264:H1478-H1484.

    PubMed  Google Scholar 

  34. Caraceni, P., Rosenblum, E. R., Van Thiel, D., and Borle, A. B. 1994. Reoxygenation injury in isolated rat hepatocytes: relation to oxygen free radicals and lipid peroxidation. Am. J. Physiol. 266:G799-G806.

    PubMed  Google Scholar 

  35. Neary, J. T., Rathbone, M. P., Cattabeni, F., Abbrachio, M. P., and Burnstock, G. 1996. Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci. 19:13-18.

    PubMed  Google Scholar 

  36. Rubin, M. A., Jurach, A., Costa Jr., E., Lima, T. T., Jiménez-Bernal, R., Begnini, J., Souza, D. O., and Mello, C. F. 1996. GMP reverses the facilitatory effect of glutamate on inhibitory avoidance task in rats. NeuroReport. 7:2078-2080.

    PubMed  Google Scholar 

  37. Malcon, C., Schaval, M., Komlos, F., Partata, W., Saueressig, M., Ramirez, G., and Souza, D. O. 1997. GMP protects against quinolinic acid-induced loss of NADPH-diaphorase-positive cells in the rat striatum. Neurosci. lett. 225:145-148.

    PubMed  Google Scholar 

  38. Whittingham, T. S., Lust, W. D., Christakis, D. A., and Passonneau, J. V. 1984. Metabolic stability of hippocampal slice preparations during prolonged incubation. J. Neurochem. 43:689-696.

    PubMed  Google Scholar 

  39. Regner, A., Costa, M. S., Friedman, G., Chemale, I., and Souza, D. O. 1997. Binding of [3H]Guanosine-monophosphate to cerebral cortex membranes of rats and human victims of brain injury. J. Neurochem. 69suppl:S143C.

    Google Scholar 

  40. Zimmerman, H. 1996. Biochemistry, localization and functional roles of ectonucleotidases in the nervous system. Prog. Neurobiol. 49:589-618.

    PubMed  Google Scholar 

  41. Lopez, J. M., Garcia, P. J., Mateos, A. F., Hernandez, R. T., Castroviejo, P. I., and Vasquez, O. J. 1989. Purine transport through the blood-brain barrier in hypoxanthine phosphoribosyltransferase deficiency. Med. Clin. Barc. 92:167-170.

    PubMed  Google Scholar 

  42. Uemura, Y., Miller, J. M., Matson, W. R., and Beal, M. F. 1991. Neurochemical analysis of focal ischemia in rats. Stroke. 22:1548-1553.

    PubMed  Google Scholar 

  43. Aridor, M., Rajmilevich, G., Beaven, M. A., and Sagi-Eisenberg, R. 1993. Activation of exocytosis by heterotrimeric G protein G i3. Science. 262:1569-1572.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regner, A., Ramirez, G., Belló-Klein, A. et al. Effects of Guanine Nucleotides on Glutamate-Induced Chemiluminescence in Rat Hippocampal Slices Submitted to Hypoxia. Neurochem Res 23, 519–524 (1998). https://doi.org/10.1023/A:1022430501454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022430501454

Navigation