Skip to main content
Log in

How to Solve Nonlinear Equations When a Third Order Method is Not Applicable

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we use a one-parametric family of second-order iterations to solve a nonlinear operator equation in a Banach space. A Kantorovich-type convergence theorem is proved, so that the first Fréchet derivative of the operator satisfies a Lipschitz condition. We also give an explicit error bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Altman, Concerning the method of tangent hyperbolas for operator equations, Bull. Acad. Pol. Sci., Serie Sci. Math., Ast. et Phys., 9, (1961), pp. 633–637.

    Google Scholar 

  2. V. Candela and A. Marquina, Recurrence relations for rational cubic methods II: The Chebyshev method, Computing, 45, (1990), pp. 355–367.

    Google Scholar 

  3. I. K. Argyros and D. Chen, Results on the Chebyshev method in Banach spaces, Proyecciones, 12, (1993), pp. 119–128.

    Google Scholar 

  4. D. Chen, I. K. Argyros, and Q. S. Qian, A local convergence theorem for the Super-Halley method in a Banach space, Appl. Math. Lett., 7, (1994), pp. 49–42.

    Google Scholar 

  5. B. Döring, Einige Sätze über das Verfahren der Tangierenden Hyperbeln in Banach-Räumen, Aplikace Mat. 15, (1970), pp. 418–464.

    Google Scholar 

  6. J. A. Ezquerro, A modification of the Chebyshev method, IMA J. Numer. Anal. 17, (1997), pp. 511–525.

    Google Scholar 

  7. M. A. Hernández, Newton-Raphson's method and convexity, Zb. Rad. Prirod-Mat. Fak. Ser. Mat. 22, (1995), pp. 159–166.

    Google Scholar 

  8. L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.

    Google Scholar 

  9. A. M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, 3rd ed. Academic Press, New York, 1973.

    Google Scholar 

  10. L. B. Rall, Quadratic equations in Banach spaces, Rend. Circ. Mat., Palermo (2), 10, (1961), pp. 314–332.

    Google Scholar 

  11. W. C. Rheinboldt, A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal., 5, (1968), pp. 42–63.

    Google Scholar 

  12. T. Yamamoto, On the method of tangent hyperbolas in Banach spaces, J. Comput. Appl. Math., 21, (1988), pp. 75–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the University of La Rioja (grants: API-98/A25 and API-98/B12)and DGES (grant: PB96-0120-C03-02).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, M.A., Salanova, M.A. How to Solve Nonlinear Equations When a Third Order Method is Not Applicable. BIT Numerical Mathematics 39, 255–269 (1999). https://doi.org/10.1023/A:1022389812813

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022389812813

Navigation