Skip to main content
Log in

Preparation and characterization of NiO nanorods by thermal decomposition of NiC2O4 precursor

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Synthesis of nickel oxide (NiO) nanorods was achieved by thermal decomposition of the precursor of NiC2O4 obtained via chemical reaction between Ni(CH3COO)2·2H2O and H2C2O4·2H2O in the presence of surfactant nonyl phenyl ether (9)/(5) (NP-9/5) and NaCl flux. Transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), selected area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) were used to characterize the structure features and chemical compositions of the as-made nanorods. The results showed that the as-prepared nanorods is composed of NiO with diameter of 10–80 nm, and lengths ranging from 1 to 3 micrometers. The mechanism of formation of NiO nanorods is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. M. Morales and C. M. Lieber, Science 279 (1998) 208.

    Google Scholar 

  2. D. P. Yu, C. S. Lee, I. Bello, X. S. Sun, Y. H. Tang, G. W. Zhou, Z. G. Bai, Z. Zhang, S. Q. Feng and D. P. Yu, Solid State Commun. 105 (1998) 405.

    Google Scholar 

  3. G. W. Zhou, Z. Zhang, Z. G. Bai, S. Q. Feng and D. P. Yu, Appl. Phys. Lett. 73 (1998) 677.

    Google Scholar 

  4. D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou and S. Q. Feng, ibid. 72 (1998) 3458.

    Google Scholar 

  5. H. Z. Zhang, D. P. Yu, Y. Ding, Z. G. Bai, Q. L. Hang and S. Q. Feng, ibid. 73 (1998) 3396.

    Google Scholar 

  6. J. Westwater, D. P. Gosain, S. Tomiya, S. U. Sui and H. Ruda, J Vac. Sci. Technol. B 15 (1997) 554.

    Google Scholar 

  7. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhanf, Z. G. Bai, J. J. Wang, Y. H. Zhou, W. Qian, G. C. Xiong and S. Q. Feng, Appl. Phys. Lett. 73 (1998) 3076.

    Google Scholar 

  8. Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J. P. Hare, P. D. Townsend, H. W. Kroto and D. R. M. Walton, Adv. Mater. 11 (1999) 844.

    Google Scholar 

  9. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi and H. Kakibayashi, J. Appl. Phys. 77 (1995) 447.

    Google Scholar 

  10. G. W. Meng, L. D. Zhang, Y. Qin, F. Phillipp, S. R. Qiao, H. M. Guo and S. Y. Zhang, Chin. Phys. Lett. 9 (1998) 689.

    Google Scholar 

  11. X. T. Zhou, N. Wang, H. L. Lai, H. Y. Peng, I. Bello, N. B. Wong and C. S. Lee, Appl. Phys. Lett. 74 (1999) 3942.

    Google Scholar 

  12. T.J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbons and W. E. Buhro, Science 270 (1999) 1791.

    Google Scholar 

  13. H. Dai, E. W. Wong, Y. Z. Yu, S. S.Fan and C. M. Lieber, Nature 375 (1999) 769.

    Google Scholar 

  14. W. Q. Han, S. S. Fan, Q. Q. Li and Y. D. Hu, Science 277 (1997) 1287.

    Google Scholar 

  15. W. Q. Han, S. S. Fan, Q.Q. Li and B. L. Gu, Appl. Phys. Lett. 71 (1997) 2271.

    Google Scholar 

  16. E. Leobandung, L. Guo, Y. Wang and S. Y. Chou, ibid. 67 (1997) 938.

    Google Scholar 

  17. T. One, H. Saitoh and M. Esashi, ibid. 70 (1997) 1852.

    Google Scholar 

  18. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang and S. Q. Feng, Solid State Commun. 109 (1999) 677.

    Google Scholar 

  19. D. Levin and J. Y. Ying, Stud. Surf. Sci. Catal. 110 (1997) 367.

    Google Scholar 

  20. M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. Itoh, M. Okada and T. Mouri, J. Power Sources 74(1) (1998) 46.

    Google Scholar 

  21. H. X.Yang, Q. F. Dong, X. H.Hu, X. P. Ai and S. X. Li, ibid. 79(2) (1999) 256.

    Google Scholar 

  22. TAKENOSHITA and HIDEHIRO, Patent JP 09263444 7,10, 1997, p. 6.

  23. E. L. Miller and R. E. Rocheleau, J. Electrochem. Soc. 144(9) (1997) 3072.

    Google Scholar 

  24. Y. Wu, G. Wu and X. Ni, J. Vac. Sci. Technol. 19(3) (1999) 228.

    Google Scholar 

  25. Y. Wang and J. Ke, High Technol. Lett. 3(1) (1997) 92.

    Google Scholar 

  26. A. C. Felic, F. Lama and M. J. Piacentini, Appl. Phys. 80(12) (1997) 3678.

    Google Scholar 

  27. Ullmann's Encyclopedia of industrial Chemistry, Vol. A17, 238 (1991).

  28. J. L. Shi, J. H. Gao and Z. X. Lin, Solid State Ionics 32 (1989) 537.

    Google Scholar 

  29. A. Chatterzee and D. J. Chakravoty, J. Mater. Sci. 27 (1992) 4115.

    Google Scholar 

  30. Y. Wang and J. J. Ke, Mater. Res. Bull. 31(1) (1996) 55.

    Google Scholar 

  31. R. E. Dietz, G. I. Parisot and A. E. Meixer, Phys. Rev. B 4 (1971) 2302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghou Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Xu, G. & Wang, G. Preparation and characterization of NiO nanorods by thermal decomposition of NiC2O4 precursor. Journal of Materials Science 38, 779–782 (2003). https://doi.org/10.1023/A:1021856930632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021856930632

Keywords

Navigation