Skip to main content
Log in

A Comparison Between Different Designs and Tests to Detect QTLs in Association Studies

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The availability of different designs and tests to detect QTLs in association studies raises questions about the relative merits of the various approaches. We therefore compared the power of quantitative versus categorical tests, the power in population samples versus samples with subjects selected on the basis of their trait scores, and the power of tests that control for population stratification using parental genotypes versus tests that do not control for stratification. In case–control samples the power of quantitative tests was clearly better than that of categorical tests especially when the control group was a population sample. In samples of genotyped trios of cases and their parents, the power of quantitative tests was much poorer. Compared to population samples, selection always improved the power in case–control samples where the controls were sampled from the opposite end of the continuum and frequently deteriorated the power when the controls were a population sample. Mainly because subjects with at least one heterozygous parent need to be selected, the use of tests that control for stratification resulted in a substantial decrease of power. In the final section our power calculations were integrated into a more general discussion about optimizing designs in association studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Allison, D. B. (1997). Transmission-disequilibrium tests for quantitative traits. Am. J. Hum. Genet. 60:676-690.

    Google Scholar 

  • Allison, D. B., Heo, M., Schork, N. J., Wong, S. L., and Elston, R. C. (1998). Extreme selection strategies in gene mapping studies of oligogenic quantitative traits do not always increase power. Hum. Hered. 48:97-107.

    Google Scholar 

  • Amos, C. I., Elston, R. C., Wilson, A. F., and Bailey-Wilson, J. E. (1989). A more powerful robust sib-pair test of linkage for quantitative traits. Genet. Epidemiol. 6:435-449.

    Google Scholar 

  • Boerwinkle, E., Chakraborty, R., and Sing, S. F. (1986). The use of measured genotype information in the analysis of quantitative phenotypes in man. I. Models and analytical methods. Ann. Hum. Genet. 50:181-194.

    Google Scholar 

  • Carey, G., and Williamson, J. (1991). Linkage analysis of quantitative traits: Increased power by using selected samples. Am. J. Hum. Genet. 49:786-796.

    Google Scholar 

  • Cohen, J. (1983). The cost of dichotomization. Appl. Psychol. Meas. 7:249-253.

    Google Scholar 

  • Cox, E. P. (1980). The optimal number of repsonse categories for a scale: A review. J. Market. Res. 17:407-422.

    Google Scholar 

  • Dolan, C. V., and Boomsma, D. I. (1998). Optimal selection of sib pairs from random samples for linkage analysis of a QTL using the EDAC test. Behav. Genet. 28:197-206.

    Google Scholar 

  • Eaves, L., and Meyer, J. (1994). Locating human quantitative trait loci: Guidelines for the selection of sibling pairs for genotyping. Behav. Genet. 24:443-455.

    Google Scholar 

  • Eaves, L. J., Neale, M., and Maes, H. (1996). Multivariate multipoint linkage analysis of quantitative trait loci. Behav. Genet. 26:519-525.

    Google Scholar 

  • Ewens, W. J., and Spielman, R. S. (1995). The transmission/disequilibrium test: History, subdivision, and admixture. Am. J. Hum. Genet. 57:455-464.

    Google Scholar 

  • Falconer, D. S. (1989). Introduction to Quantitative Genetics, Longman, Essex.

    Google Scholar 

  • Fulker, D. W., Cherny, S. S., and Cardon, L. R. (1995). Multipoint interval mapping of quantitative trait loci, using sib pairs. Am. J. Hum. Genet. 56:1224-1233.

    Google Scholar 

  • Fulker, D. W., Cherny, S. S., Sham, P. C., and Hewitt, J. K. (1999). Combined linkage and association sib-pair analysis for quantitative traits. Am. J. Hum. Genet. 64:259-267.

    Google Scholar 

  • Green, J. R., and Shah, S. (1993). Power comparison of various sibship tests of association, Ann. Hum. Genet. 57:151-158.

    Google Scholar 

  • Haseman, J. K., and Elston, R. C. (1972). The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2 3-19.

    Google Scholar 

  • Haynam, G. E., Govindarajulu, Z., and Leone, F. C. (1973). Tables of the cumulative chi-square distribution. In Harter, H. L., and Oweb, D. B. (eds.), Selected Tables in Mathematical Statistics, American Statistical Society, Providence, RI.

    Google Scholar 

  • Hoel, P. G. (1984). Introduction to Mathematical Statistics, Wiley, New York.

    Google Scholar 

  • Humphreys, L. G. (1978). Research on individual differences requires correlational analysis, not ANOVA. Intelligence 2:1-5.

    Google Scholar 

  • Kendler, K. S., and Kidd, K. K. (1986). Recurrence risks in an oligogenic threshold model: The effect of alterations in allele frequency. Ann. Hum. Genet. 50:83-91.

    Google Scholar 

  • Knapp, M., Wassmer, G., and Baur, M. P. (1995). The relative efficiency of the Hardy-Weinberg equilibrium-likelihood and the conditional on parental genotype-likelihood methods for candidate-gene association studies. Am. J. Hum. Genet. 57:1476-1485.

    Google Scholar 

  • Kruglyak, L., and Lander, E. S. (1995). Complete multipoint sib pair analysis of qualitative and quatitative traits. Am. J. Hum. Genet. 139:1421-1428.

    Google Scholar 

  • Lord, F. M., and Novick, M. R. (1968). Statistical Theories of Mental Test Scores, Addington-Wesley, Reading, MA.

    Google Scholar 

  • Mather, K., and Jinks, J. L. (1971). Biometrical Genetics, Chapman and Hall, London.

    Google Scholar 

  • Maxwell, S. E., Delaney, H. D., and Dill, C. A. (1984). Another look at ANCOVA versus blocking. Psychol. Bull. 95:136-147.

    Google Scholar 

  • Neale, M. C. (1994). Mx: Statistical Modeling, Department of Psychiatry of the Virginia Commonwealth University, Richmond.

    Google Scholar 

  • Neale, M. C., Eaves, L. J., and Kendler, K. S. (1994). The power of classical twin study to resolve variation in threshold traits. Behav. Genet. 24:239-258.

    Google Scholar 

  • Page, G. P., and Amos, C. I. (1999). Comparison of linkage-disequilibrium methods for localization of genes influencing quantitative traits in humans. Am. J. Hum. Genet. 64:1194-1205.

    Google Scholar 

  • Plomin, R. (1990). The role of inheritance in behavior. Science 248:183-188.

    Google Scholar 

  • Rabinowitz, D. (1997). A transmission disequilibrium test for quantitative trait loci. Hum. Hered. 7:342-350.

    Google Scholar 

  • Risch, N., and Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science 273:1516-1517.

    Google Scholar 

  • Risch, N., and Zhang, H. (1995). Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science 268:1584-1589.

    Google Scholar 

  • Rubinstein, P., Walker, M., Carpenter, C., Carrier, C., Krassner, J., Falk, C., and Ginsberg, F. (1981). Genetics of HLA disease associations: The use of the haplotype relative risk (HRR) and the “haplo-delta” (DH) estimates in juvenile diabetes from three racial groups. Hum. Immunol. 3:384.

    Google Scholar 

  • SAGE (1994). Statistical Analysis for Genetic Epidemiology, Release 2.2, Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland OH.

    Google Scholar 

  • Satorra, A., and Saris, W. E. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika 50:83-90.

    Google Scholar 

  • Schaid, D. J., and Sommer, S. S. (1993). Genotype relative risks: Methods for design and analysis of candidate-gene association studies. Am. J. Hum. Genet. 53:1114-1126.

    Google Scholar 

  • Schork, N. (1993). Extended multipoint identity-by-descent analysis of human quantitative traits: Efficiency, power, and modeling considerations. Am. J. Hum. Genet. 53:1306-1319.

    Google Scholar 

  • Sham, P. (1998). Statistics in Human Genetics, Arnold, London.

    Google Scholar 

  • Spielman, R. S., and Ewens, W. J. (1998). A sibship test for linkage in the presence of association: The sib transmission/disequilibrium test. Am. J. Hum. Genet. 62:450-458.

    Google Scholar 

  • Spielman, R. S., McGinnis, R. E., and Ewens, W. J. (1993). Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52:506-516.

    Google Scholar 

  • Stephens, J. C., Briscoe, D., and O'Brien, S. J. (1994). Mapping by stratification linkage disequilibrium in human populations: Limits and quidelines. Am. J. Hum. Genet. 55:809-824.

    Google Scholar 

  • Thomson, G. (1995). Mapping disease genes: Family-based association studies. Am. J. Hum. Genet. 57:487-498.

    Google Scholar 

  • van den Oord, E. J. C. G. (1999). A framework for identifying quantitative trait loci in association studies using structural equation modeling. Genet. Epidemiol. (in press).

  • Xiong, M. M., Krushkal, J., and Boerwinkle, E. (1998). TDT statistics for mapping quantitative trait loci. Ann. Hum. Genet. 62:431-452.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Oord, E.J.C.G. A Comparison Between Different Designs and Tests to Detect QTLs in Association Studies. Behav Genet 29, 245–256 (1999). https://doi.org/10.1023/A:1021690206763

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021690206763

Navigation