Skip to main content
Log in

Arginine Methylation of Recombinant Murine Fibrillarin by Protein Arginine Methyltransferase

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

Fibrillarin is a conserved nucleolar SnoRNP with a diverse N-terminal glycine- and arginine-rich (GAR) domain in most eukaryotes. This region in human fibrillarin is known to contain modified dimethylarginines. In this report we demonstrate that recombinant murine fibrillarin is a substrate for protein arginine methyltransferase, including the purified recombinant enzyme (rat PRMT1 and yeast RMT1) and the protein methyltransferases present in lymphoblastoid cell extracts. Our results of protease digestion, methylation competition reactions, and immunoblotting with a methylarginine-specific antibody all indicate that the methylation of fibrillarin is in the N-terminal GAR domain and arginyl residues are modified. Finally, amino acid analyses revealed that the modification of recombinant murine fibrillarin forms methylarginines, mostly as dimethylarginines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abramovich, C., Yakobson, B., Chebath, J., and Revel, M. A. (1997). Protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. EMBO J. 16: 260-266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ai, L.-S., Lin, C.-H., Hsieh, M., and Li, C. (1999). Arginine methylation of a glycine and arginine rich peptide derived from the sequences of human FMRP and fibrillarin. Proc. Natl. Sci. Counc. Repub. China B 23: 175-180.

    CAS  PubMed  Google Scholar 

  • Baldwin, G. S., and Carnegie, P. R. (1971). Specific enzymatic methylation of an arginine in the experimental allergic encephalomyelitis protein from human myelin. Science 171: 579-581.

    Article  CAS  PubMed  Google Scholar 

  • Brahms, H., Raymackers, J., Union, A., de Keyser, F., Meheus, L., and Luhrmann, R. (2000). The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J. Biol. Chem. 275: 17122-17129.

    Article  CAS  PubMed  Google Scholar 

  • Brahms, H., Meheus, L., de Brabandere, V., Fischer, U., and Luhrmann, R. (2001). Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B'pr and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7: 1531-1542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branscombe, T. L., Frankel, A., Lee, J. H., Cook, J. R., Yang, Z., Pestka, S., et al. (2001). PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. J. Biol. Chem. 276: 32971-32976.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D., Ma, H., Hong, H., Koh, S. S., Huang, S. M., Schurter, B. T., et al. (1999). Regulation of transcription by a protein methyltransferase. Science 284: 2174-2177.

    Article  CAS  PubMed  Google Scholar 

  • David, E., McNeil, J. B., Basile, V., and Pearlman, R. E. (1997). An unusual fibrillarin gene and protein: structure and functional implications. Mol. Biol. Cell 8: 1051-1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankel, A., Yadav, N., Lee, J., Branscombe, T. L., Clarke, S., and Bedford, M. T. (2002). The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J. Biol. Chem. 277: 3537-3543.

    Article  CAS  PubMed  Google Scholar 

  • Friesen, W. J., Massenet, S., Paushkin, S., Wyce, A., and Dreyfuss, G. (2001). SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Molec. Cell 7: 1111-1117.

    Article  CAS  PubMed  Google Scholar 

  • Gary, J. D., Lin, W. J., Yang, M. C., Herschman, H. R., and Clarke, S. (1996). The predominant protein-arginine methyltransferase from Saccharomyces cerevisiae. J. Biol. Chem. 271: 12585-12594.

    Article  CAS  PubMed  Google Scholar 

  • Gary, J. D., and Clarke, S. (1998). RNA and protein interactions modulated by protein arginine methylation. Prog. Nucleic Acid Res. Mol. Biol. 61: 65-131.

    Article  CAS  PubMed  Google Scholar 

  • Jones, K. W., Gorzynski, K., Hales, C. M., Fischer, U., Badbanchi, F., Terns, R. M., et al. (2001). Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin. J. Biol. Chem. 276: 38645-38651.

    Article  CAS  PubMed  Google Scholar 

  • Katsanis, N., Yaspo, M.-L., and Fisher, E. M. C. (1997). Identification and mapping of a novel human gene, HRMT1L1, homologous to the rat protein arginine N-methyltransferase 1 (PRMT1) gene. Mamm. Genome 8: 526-529.

    Article  CAS  PubMed  Google Scholar 

  • Lapeyre, B., Amalric, F., Ghaffari, S. H., Venkatarama Rao, S. V., Dumbar, T. S., and Olson, M. O. (1986). Protein and cDNA sequence of a glycine-rich, dimethylarginine containing region located near the carboxyl-terminal end of nucleolin (c23 and 100 kDa). J. Biol. Chem. 261: 9167-9173.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Ai, L. S., Lin, C. H., Hsieh, M., Li, Y. C., and Li, S. Y. (1998). Protein N-arginine methylation in adenosine dialdehyde-treated lymphoblastoid cells. Arch. Biochem. Biophys. 351: 53-59.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C. H., Hsieh, M., Li, Y. C., Li, S. Y., Pearson, D. L., Pollard, K. M., et al. (2000). Protein N-arginine methylation in subcellular fractions of lymphoblastoid cells. J. Biochem (Tokyo) 128, 493-498.

    Article  CAS  PubMed  Google Scholar 

  • Lin, W. J., Gary, J. D., Yang, M. C., Clarke, S., and Herschman, H. R. (1996). The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J. Biol. Chem. 271: 15034-15044.

    Article  CAS  PubMed  Google Scholar 

  • Lischwe, M. A., Ochs, R. L., Reddy, R., Cook, R. G., Yeoman, L. C., Tan, E. M., et al. (1985). Purification and partial characterization of a nucleolar scleroderma antigen (Mr = 34,000; pI, 8.5) rich in N G , N G-dimethylarginine. J. Biol. Chem. 260: 14304-14310.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q., and Dreyfuss, G. (1995). In vivo and in vitro arginine methylation of RNA-binding proteins. Mol. Cell. Biol. 15: 2800-2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell, E. S. and Fournier, M. J. (1995). The small nucleolar RNAs. Annu. Rev. Biochem. 64: 897-934.

    Article  CAS  PubMed  Google Scholar 

  • Mowen, K. A., Tang, J., Zhu, W., Schurter, B. T., Shuai, K., Herschman, H. R., et al. (2001). Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell 104: 731-741.

    Article  CAS  PubMed  Google Scholar 

  • Najbauer, J., Johnson, B. A., Young, A. L., and Aswad, D. W. (1993). Peptides with sequences similar to glycine, arginine-rich motifs in proteins interacting with RNA are efficiently recognized by methyltransferase(s) modifying arginine in numerous proteins. J. Biol. Chem. 268: 10501-10509.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, R. C., Wang, X. W., Tang, J., Hamilton, B. J., High, F. A., Herschman, H. R., et al. (2000). The RGG domain in hnRNP A2 affects subcellular localization. Exp. Cell Res. 256: 522-532.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, D. L., Reimonenq, R. D., and Pollard, K. M. (1999). Expression and purification of recombinant mouse fibrillarin. Protein Expr. Purif. 17: 49-56.

    Article  CAS  PubMed  Google Scholar 

  • Pellizzoni, L., Charroux, B., and Dreyfuss, G. (1999). SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins. Proc. Natl. Acad. Sci. USA 96: 11167-11172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellizzoni, L., Baccon, J., Charroux, B., and Dreyfuss, G. (2001). The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr. Biol. 11: 1079-1088.

    Article  CAS  PubMed  Google Scholar 

  • Rajpurohit, R., Lee, S. O., Park, J. O., Paik, W. K., and Kim, S. (1994a). Enzymatic methylation of recombinant heterogeneous nuclear RNP protein A1: Dual substrate specificity for S-adenosylmethionine: histone-arginine N-methyltransferase. J. Biol. Chem. 269: 1075-1082.

    Article  CAS  PubMed  Google Scholar 

  • Rajpurohit, R., Paik, W. K., and Kim, S. (1994b). Effect of enzymatic methylation of heterogeneous ribonucleoprotein particle A1 on its nucleic-acid binding and controlled proteolysis. Biochem. J. 304: 903-909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rho, J., Choi, S., Seong, Y. R., Cho, W. K., Kim, S. H., and Im, D. S. (2001). Prmt5, which forms distinct homo-oligomers, is a member of the protein-arginine methyltransferase family. J. Biol. Chem. 276: 11393-11401.

    Article  CAS  PubMed  Google Scholar 

  • Scott, H. S., Antonarakis, S. E., Lalioti, M. D., Rossier, C., Silver, P. M., and Henry, M. F. (1998). Identification and Characterization of two putative human arginine methyltransferase (HRMT1L1 and HRMT1L2). Genomics 48: 330-340.

    Article  CAS  PubMed  Google Scholar 

  • Shen, E. C., Henry, M. F., Weiss, V. H., Valentini, S. R., Silver, P. A., and Lee, M. S. (1998). Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev. 12: 679-691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, J., Gary, J. D., Clarke, S., and Herschman, H. R. (1998). PRMT 3, a type I protein arginine N-methyltransferase that differs from PRMT1 in its oligomerization, subcellular localization, substrate specificity, and regulation. J. Biol. Chem. 273: 16935-16945.

    Article  CAS  PubMed  Google Scholar 

  • Tollervey, D., Lehtonen, H., Jansen, R., Kern, H., and Hurt, E. C. (1993). Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72: 443-457.

    Article  CAS  PubMed  Google Scholar 

  • Turley, S. J., Tan, E. M., and Pollard, K. M. (1993). Molecular cloning and sequence analysis of U3 snoRNA-associated mouse fibrillarin. Biochim. Biophys. Acta 1216: 119-122.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Boisvert, D., Kim, K. K., Kim, R., and Kim, S. H. (2000). Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. EMBO J. 19: 317-323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Huang, Z. Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B. D., et al. (2001). Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293: 853-857.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CH., Huang, HM., Hsieh, M. et al. Arginine Methylation of Recombinant Murine Fibrillarin by Protein Arginine Methyltransferase. J Protein Chem 21, 447–453 (2002). https://doi.org/10.1023/A:1021394903025

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021394903025

Navigation