Skip to main content
Log in

Measurement of polarization parameters impacting on electrodeposit morphology I: Theory and development of technique

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A newly extended theory is presented on the role of polarization characteristics in determining the morphology of thick, polycrystalline metal electrodeposits. The theory is applicable to any system in which a single metal deposits. A simple galvanodynamic scanning procedure is more favourable than cyclic voltammetry, for predicting deposit morphology. The galvanodynamic technique represents an improved way of measuring accurately the nucleation potential and plating potential. According to the extended theory, these potentials can be readily related to the major metallographic structures of polycrystalline electrodeposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.J. Krauss, J. Metals 28(11) (1976) 4.

    Google Scholar 

  2. C.J. Krauss and R.C. Kerby, in I.H. Warren (Ed), ‘Application of Polarization Measurements in the Control of Metal Deposition’ (Elsevier, Amsterdam, 1984), pp. 241–252.

    Google Scholar 

  3. T.J. O'Keefe, in I.H. Warren (Ed), op. cit. [2], pp. 15–41.

    Google Scholar 

  4. T.N. Andersen, R.C. Kerby and T.J. O'Keefe, J. Metals 37(1) (1985) 36.

    Google Scholar 

  5. R. Winand, M. Degrex and V. Bastin, in W.C. Cooper, D.J. Kemp, G.E. Lagos and K.G. Tan (Eds), ‘Copper 91 (Vol. III: Hydrometallurgy and Electrometallurgy of Copper)', (Pergamon, New York, 1992), pp. 341–354.

    Google Scholar 

  6. R.C. Kerby, US Patent 4 443 301 (1984).

  7. R.E. Alford, in P.L. Claessens and G.B. Harris (Eds), ‘Electrometallurgical Plant Practice’ (Pergamon, New York, 1990), pp. 309–313.

    Google Scholar 

  8. J.A. Gonzalez-Dominguez, Minerals Eng. 7 (1994) 87.

    Google Scholar 

  9. B.A. Lamping and T.J. O'Keefe, Met. Trans. B. 7 (1976) 551.

    Google Scholar 

  10. D.J. Mackinnon and J.M. Brannen, J. Appl. Electrochem. 7 (1977) 451.

    Google Scholar 

  11. T. Biegler, in I.H. Warren (Ed), op. cit. [2], pp. 32–46.

    Google Scholar 

  12. R.C. Kerby, H.E. Jackson, T.J. O'Keefe and Y-M. Wang, Metall. Trans. B 8 (1977) 661.

    Google Scholar 

  13. A.M. Alfantazi, D.B. Dreisinger, M. Boissoneault and J. Synnot, in D.B. Dreisinger (Ed), ‘Aqueous Electrotechnologies: Progress in Theory and Practice', The Minerals, Metals & Materials Society (1997), pp. 139–161.

  14. I.H. Warren, in K. Tozawa (Ed), ‘Zinc ‘85: Proceedings of the International Symposium on Extractive Metallurgy of Zinc', (MMIJ, Tokyo, 1985), pp. 251–264.

    Google Scholar 

  15. D.J. Mackinnon, R.M. Morrison, J.E. Mouland and P.E. Warren, J. Appl. Electrochem. 20 (1990) 728.

    Google Scholar 

  16. R.C. Kerby and C.J. Krauss, in J.M. Cigan, T.S. Mackey and T.J. O'Keefe (Eds), ‘Lead-Zinc-Tin ‘80', TMS-AIME, Warrendale, PA (1980), pp. 187–203.

    Google Scholar 

  17. R.C. Kerby and W.A. Jankola, in P.L. Claessens and G.B. Harris (Eds), op. cit. [7], pp. 323–330.

    Google Scholar 

  18. R. Winand, Hydrometallurgy 29 (1992) 567.

    Google Scholar 

  19. M. Maja, N. Penazzi, R. Fratesi and G. Roventi, J. Electrochem. Soc. 129 (1982) 2695.

    Google Scholar 

  20. S. Ohyama and S. Morioka, in K. Tozawa (Ed), op. cit. [14], p. 219.

    Google Scholar 

  21. F. Noguchi, T. Nakamura and M. Sakata, in T. Azakami, N. Masuko, J.E. Dutrizac and E. Ozberk, (Eds), ‘Zinc & Lead ‘95', (MMIJ, Tokyo, 1995), pp. 404–413.

    Google Scholar 

  22. H. Fischer and H.F. Heiling, Trans. Inst. Metal Finish. 31 (1954) 90.

    Google Scholar 

  23. A. Weymeersch, L. Renard, J.J. Conreur, R. Winand, M. Jorda and C. Pellet, Plat. Surf. Finish. 73(7) (1986) 68.

    Google Scholar 

  24. R. Winand, J. Appl. Electrochem. 21 (1991) 377.

    Google Scholar 

  25. R. Winand, Electrochim. Acta 39 (1994) 1091.

    Google Scholar 

  26. K.J. Vetter, ‘Electrochemical Kinetics. Theoretical and Experimental Aspects', translated by S. Bruckenstein and B. Howard (Academic Press, New York, 1967), pp. 134–154.

    Google Scholar 

  27. K.J. Vetter, op. cit. [26], pp. 565–570.

    Google Scholar 

  28. H. Fischer, Angew. Chem. Internat. Ed. Engl. 8 (1969) 108.

    Google Scholar 

  29. E. Budevski, G. Staikov and W.J. Lorenz, ‘Electrochemical Phase Formation and Growth’ (VCH, Weinheim, 1996), pp. 20–39.

    Google Scholar 

  30. L. Oniciu and L. Muresan, J. Appl. Electrochem. 21 (1991) 565.

    Google Scholar 

  31. E. Budevski, G. Staikov and W.J. Lorenz, op. cit [29], p. 273.

    Google Scholar 

  32. Y. Ogata, K. Yamakawa and S. Yoshizawa, J. Appl. Electrochem 13 (1983) 611.

    Google Scholar 

  33. K.J. Vetter, op. cit. [26], pp. 326–327.

    Google Scholar 

  34. E. Budevski, G. Staikov and W.J. Lorenz, op. cit [29], p. 163.

    Google Scholar 

  35. J.W. Mullin, ‘Crystallisation’ (Butterworths, London, 2nd edn, 1972), pp. 136–150.

    Google Scholar 

  36. J.C. Brice, ‘The Growth of Crystals fromLiquids’ (North-Holland Publishing, Amsterdam, 1973), pp. 89–97.

    Google Scholar 

  37. T. Xue, W.C. Cooper, R. Pascual and S. Saimoto, J. Appl. Electrochem. 21 (1991) 238.

    Google Scholar 

  38. E. Budevski, G. Staikov and W.J. Lorenz, op. cit. [29], pp. 180–199.

    Google Scholar 

  39. S. Fletcher, Electrochim. Acta 28 (1983) 237.

    Google Scholar 

  40. S. Fletcher and D.B. Matthews, J. Appl. Electrochem. 11 (1981) 11.

    Google Scholar 

  41. E. Budevski, G. Staikov and W.J. Lorenz, op. cit. [29], p. 39.

    Google Scholar 

  42. A.W. Adamson, ‘Physical Chemistry of Surfaces’ (Wiley Interscience, New York, 5th edn, 1990), pp. 508–513.

    Google Scholar 

  43. K.J. Vetter, op. cit. [26], pp. 671–673.

    Google Scholar 

  44. P.A. Adcock, S.B. Adeloju, O.M.G. Newman, in J.A. Gonzalez, J.E. Dutrizac and G.H. Kelsall (Eds), ‘Electrometallurgy 2001', (CIM, Montreal, 2001), pp. 401–414.

    Google Scholar 

  45. M.J. Howell, A.R. Ault, O.M.G. Newman, K.J. Cavell and B.V. O'Grady, in I.G. Matthew (Ed), ‘World Zinc ‘93’, (AusIMM, Melbourne, 1993), pp. 307–314

    Google Scholar 

  46. T. Xue, W.C. Cooper, R. Pascual and S. Saimoto,J. Appl. Electrochem. 21 (1991) 231.

    Google Scholar 

  47. E. Budevski, G. Staikov and W.J. Lorenz, op. cit [29], p. 179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adcock, P., Adeloju, S. & Newman, O. Measurement of polarization parameters impacting on electrodeposit morphology I: Theory and development of technique. Journal of Applied Electrochemistry 32, 1101–1107 (2002). https://doi.org/10.1023/A:1021251603240

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021251603240

Navigation