Skip to main content
Log in

Process intensification in particle technology: flow induced phase inversion in the intensive emulsification of epoxy polymer melts in water

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The flow induced phase inversion phenomenon is applied to the phase inversion emulsification of high molecular weight epoxy polymer melt to obtain sub-micron particles. It is found that molecular surfactants could not be used to obtain the initial [water-in-polymer melt] emulsion. Polymeric surfactants, hydrophobically modified water soluble polymers have to be used for this purpose. The molecular structure of the polymeric surfactant is important in obtaining smaller emulsion droplets for a given polymer melt. Depending on the processing history, either a ‘powdery dispersion’ containing 10 wt% water or water continuous dispersion can be obtained. Sub-micron epoxy particles can be obtained, even at relatively low polymeric surfactant concentrations, by subjecting the [water-in-polymer melt] emulsion to very high deformation rates using a model static mixer called Multiple Expansion Contraction Static Mixer. This mixer is essentially a series of short capillaries separated by flow dividers. In order to provide constant flow rate at very high pressures, an injection moulding machine is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Sjoblom, “Encyclopaedic Handbook of Emulsion Technology” (Marcel Dekker, New York, 2001).

    Google Scholar 

  2. B. Ellis, in“Chemistry and Technology of Epoxy Resins,” edited by B. Harris(Chapman and Hall, London, 1993), ch. 1, p. 1.

    Google Scholar 

  3. G. Akay, Chem. Eng. Sci. 53 (1998) 203.

    Google Scholar 

  4. G. Akay, in “Polymer Powder Technology,” 2nd ed., edited by M. Narkis and N. Rosenzweig (Wiley, New York, 1998) ch. 20, p. 542.

    Google Scholar 

  5. G. Akay, in “Recent Advances in Transport Phenomena,” edited by I. Dincer and M. F. Yardim (Elsevier, Paris, 2000) p. 11.

    Google Scholar 

  6. G. Akay and L. Tong, Chem. Eng. Technol. 23 (2000) 285.

    Google Scholar 

  7. G. Akay and L. Tong, J. Mater. Sci. 35 (2000) 3699.

    Google Scholar 

  8. G. Akay, L. Tong, M. J. Hounslow and A. S. Burbidge, Colloid Polym. Sci. 279 (2001) 1118.

    Google Scholar 

  9. G. Akay and L. Tong, J. Colloid Interface Sci. 239 (2001) 342.

    Google Scholar 

  10. T. Pekdemir, G. Akay, M. Dogru, R. E. Merrells and B. Schleicher, Sep. Sci. Technol., in press.

  11. G. Akay, Polym. Eng. Sci. 30 (1990) 1361.

    Google Scholar 

  12. G. Akay, ibid. 34 (1994) 865.

  13. G. Akay, US Patent 4 988 369, 1991; idem., European Patent 382 464, 1992; idem., Japanese Patent, 940 37634, 1994.

  14. G. Akay, Australian Patent 633 299, 1993.

  15. G. Akay, European Patent 649867, 2001.

  16. G. Akay and L. Tong, in “Progress in Transport Phenomena,” edited by S. Dost, H. Struchtrup and I. Dincer (Elsevier, Paris, 2002) p. 681.

    Google Scholar 

  17. G. Akay, S. Downes and V. J. Price, PCTWO00/34454, 2000.

  18. G. Akay, T. Pekdemir and J. Vickers, WO 02/10070, 2002.

  19. G. Akay, G. N. Irving, A. J. Kowalski and D. Machin, PCT WO 96/20270, 1996.

  20. B. W. Brooks and H. N. Richmond, J. Colloid Interface Sci. 162 (1994) 67.

    Google Scholar 

  21. G. Akay, J. Non-Newtonian Fluid Mech. 13 (1983) 309.

    Google Scholar 

  22. R. J. Crowson and M. J. Folkes, Polym. Eng. Sci. 20 (1980) 934.

    Google Scholar 

  23. G. Akay, ibid. 22 (1982) 1027.

    Google Scholar 

  24. G. Akay, M. R. Mackley and C. Ramshaw, in “IChemE Research Event” (Chameleon Press, London, 1997), p. 597.

    Google Scholar 

  25. G. Akay, L. Tong, H. Bakr, R. A. Choudhery, K. Murray and J. Watkins, J. Mater. Sci., accepted.

  26. M. Tanaka and S. Honma, European Patent, 246 729, 1987.

  27. Y. Kousaka and Y. Endo, in “Powder Technology Handbook” (Marcel Dekker, INC., New York, 1997) p. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Akay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, L., Akay, G. Process intensification in particle technology: flow induced phase inversion in the intensive emulsification of epoxy polymer melts in water. Journal of Materials Science 37, 4985–4992 (2002). https://doi.org/10.1023/A:1021019111683

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021019111683

Keywords

Navigation