Skip to main content
Log in

Microstructure and mechanical properties of chromium and chromium/nickel particulate reinforced alumina ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A range of Al2O3-Cr and Al2O3-Cr/Ni composites have been made using either pressureless sintering in the presence of a graphite bed or hot pressing. Examination of the microstructures shows that they are fully dense (typically 98–99% of the theoretical density) and that the micrometre-scale metallic particles remain discrete and homogeneously dispersed in all composites. All of the hot pressed specimens had higher flexural strengths than the sintered materials. Within each processing route, the composites had slightly lower strength values than the equivalent monolithic alumina specimens. This was attributed to weak interfacial bonding. Fracture toughness behaviour was investigated using indentation and double cantilever beam methods. All of the composites were found to be tougher than the parent alumina and to show resistance-curve behaviour. For the composites, maximum fracture toughness values were 5–6 MPa m1/2 (about double the value for alumina) for process zone sizes of a few millimetres, although steady state was not reached in the limited number of specimens tested. Examination of fracture surfaces and indentation cracks showed that the toughening potential of the metal particles was not exploited to any significant extent. This was mainly due to weak metal-Al2O3 interfaces, but also because of carbon embrittlement of the metallic particles in which chromium was the major constituent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. BREVAL, Z. DENG, S. CHIOU and C. G. PANTANO, J. Mater. Sci. 27(1992) 1464.

    Google Scholar 

  2. E. BREVAL and C. G. PANTANO, ibid. 27 (1992) 5463.

    Google Scholar 

  3. W. H. TUAN and R. J. BROOK, Journal of the European Ceramic Society 6 (1990) 31.

    Google Scholar 

  4. X. SUN and J. YEOMANS, J. Amer. Ceram. Soc. 79 (1996) 2705.

    Google Scholar 

  5. T. SEKINO, T. NAKAJIMA, S. UEDA and K. NIIHARA, ibid. 80 (1997) 1139.

    Google Scholar 

  6. R.Z. CHEN and W. H. TUAN, Journal of the European Ceramic Society 19 (1999) 463. 5235

    Google Scholar 

  7. J. LU, L. GAO, J. SUN, L. GUI and J. GUO, Materials Science and Engineering, A 293(2000) 223.

    Google Scholar 

  8. M. LIEBERTHAL and W. D. KAPLAN, ibid. A302 (2001) 83.

    Google Scholar 

  9. S.-T. OH, M. SANDO and K. NIIHARA, J. Amer. Ceram. Soc. 81 (1998)3013.

    Google Scholar 

  10. Idem., Scripta Mater. 39 (1998) 1413.

    Google Scholar 

  11. J. L. GUICHARD, O. TILLEMENTand A. MOCELLIN, J. Mater. Sci. 32 (1997) 4513.

    Google Scholar 

  12. P. A. TRUSTY and J. A. YEOMANS,Journal of the European Ceramic Society 18 (1998) 495.

    Google Scholar 

  13. CH. LAURENT, A. PEIGNEY, O. QUÉNARD and A. ROUSSET, Sil. Ind. 63 (1998) 77.

    Google Scholar 

  14. J. L. GUICHARD, O. TILLEMENT and A. MOCELLIN, Journal of the European Ceramic Society 18 (1998) 1743.

    Google Scholar 

  15. W.B CHOU and W. H. TUAN, Journal of the European Ceramic Society 15 (1995) 291.

    Google Scholar 

  16. O. SBAIZERO and G. PEZZOTTI, Journal of the European Ceramic Society 20 (2000) 1145.

    Google Scholar 

  17. M. NAWA, T. SEKINO and K. NIIHARA, J. Mater. Sci. 29 (1994) 3185

    Google Scholar 

  18. J. LU, L. GAO, J. GUO and K. NIIHARA, Materials Research Bulletin 35 (2000) 2387.

    Google Scholar 

  19. D.E. ALDRICH and M. J. EDIRISINGHE, J. Mater. Sci. Lett. 17 (1998) 965.

    Google Scholar 

  20. S-T. OH, T. SEKINO and K. NIIHARA, Journal of the European Ceramic Society 18 (1998) 31.

    Google Scholar 

  21. S-T. OH, J-S. LEE, T. SEKINO and K. NIIHARA, Scripta Mater. 44 (2001) 2117.

    Google Scholar 

  22. T. SEKINO and K. NIIHARA, Nanostructured Materials 6 (1995) 663.

    Google Scholar 

  23. Idem., J.Mater. Sci. 32 (1997) 3943.

    Google Scholar 

  24. Y. S. TOULOUKIAN, R. K. KIRBY, R. E. TAYLOR and P.D. DESAI (Eds.) in “Thermophysical Properties of Matter, ” The TPRC Data Series, Vol. 12: Thermal Expansion—Metallic Elements and Alloys (Plenum, New York, 1975) p. 61.

  25. Y. S. TOULOUKIAN, R. K. KIRBY, R.E. TAYLOR and T. Y. R. LEE (Eds.) in “Thermophysical Properties of Matter, ” The TPRC Data Series,Vol. 13: Thermal Expansion—Non-Metallic Solids (Plenum, New York, 1977) p. 176.

  26. K. M. LIANG, G. ORANGE and G. FANTOZZI, J. Mater. Sci. 25 (1990) 207.

    Google Scholar 

  27. P. A. TRUSTY, Ph. D.thesis, University of Surrey, UK, 1994.

    Google Scholar 

  28. A. H. SULLY, E. A. BRANDES and K. W. MITCHELL,Journal of the Institute of Metals 81 (1952/1953) 585.

    Google Scholar 

  29. C. GANDHI and M. F. ASHBY, ActaMetallurgica 27 (1979) 1565.

    Google Scholar 

  30. B. C. ALLEN, D. J. MAYKUTH and R. I. JAFFEE, Transactionof the Metallurgical Society of AIME 227 (1963) 724.

    Google Scholar 

  31. R. E. CAIRNS JR. and N. J. GRANT,ibid. 230(1964) 1150.

    Google Scholar 

  32. H. L. WAIN and S. T.M. JOHNSTONE, Journal of the Institute of Metals 83 (1954/1955) 133. Received 4 December 2001 and accepted 18 July 2002 5236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, Y., Yeomans, J.A. Microstructure and mechanical properties of chromium and chromium/nickel particulate reinforced alumina ceramics. Journal of Materials Science 37, 5229–5236 (2002). https://doi.org/10.1023/A:1021000318894

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021000318894

Keywords

Navigation