Skip to main content
Log in

Predicting Blood–Brain Barrier Partitioning of Organic Molecules Using Membrane–Interaction QSAR Analysis

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Membrane-interaction quantitative structure-activity relationship (QSAR) analysis (MI-QSAR) has been used to develop predictive models of blood-brain barrier partitioning of organic compounds by, in part, simulating the interaction of an organic compound with the phospholipid-rich regions of cellular membranes.

Method. A training set of 56 structurally diverse compounds whose blood-brain barrier partition coefficients were measured was used to construct MI-QSAR models. Molecular dynamics simulations were used to determine the explicit interaction of each test compound (solute) with a model DMPC monolayer membrane model. An additional set of intramolecular solute descriptors were computed and considered in the trial pool of descriptors for building MI-QSAR models. The QSAR models were optimized using multidimensional linear regression fitting and a genetic algorithm. A test set of seven compounds was evaluated using the MI-QSAR models as part of a validation process.

Results. Significant MI-QSAR models (R 2 = 0.845, Q 2 = 0.795) of the blood-brain partitioning process were constructed. Blood-brain barrier partitioning is found to depend upon the polar surface area, the octanol/water partition coefficient, and the conformational flexibility of the compounds as well as the strength of their “binding” to the model biologic membrane. The blood-brain barrier partitioning measures of the test set compounds were predicted with the same accuracy as the compounds of the training set.

Conclusion. The MI-QSAR models indicate that the blood-brain barrier partitioning process can be reliably described for structurally diverse molecules provided interactions of the molecule with the phospholipids-rich regions of cellular membranes are explicitly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. W. Goldstein and A. L. Betz. The blood-brain barrier. Sci.Am. 255:74-83 (1986).

    PubMed  Google Scholar 

  2. W. M. Pardridge. CNS drug design based on principles of blood-brain barrier transport. J.Neurochem. 70:1781-1792 (1998).

    PubMed  Google Scholar 

  3. D. J. Begley. The blood-brain barrier: Principles for targeting peptides and drugs to the central nervous system. J.Pharm.Pharmacol. 48:136-140 (1996).

    PubMed  Google Scholar 

  4. O. G. Mouritsen and K. Jorgensen. A new look at lipidmembrane structure in relation to drug research. Pharm.Res. 15:1507-1519 (1998).

    PubMed  Google Scholar 

  5. J. H. Lin and A. Y. Lu. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol.Rev 49:403-449 (1997).

    PubMed  Google Scholar 

  6. K. W. Otis, M. L. Avery, S. M. Broward-Partin, D. K. Hansen, H. W. Behlow, D. O. Scott, and T. N. Thompson. Evaluation of the BBMEC model for screening the CNS permeability of drugs. J.Pharmacol.Toxicol.Methods 45:71-77 (2001).

    PubMed  Google Scholar 

  7. A. Reichel and D. J. Begley. Potential of artificial membranes for predicting drug penetration across the blood-brain barrier. Pharm.Res. 15:1270-1274 (1998).

    PubMed  Google Scholar 

  8. G. M. Keseru and L. Molnar. High-throughput prediction of blood-brain partitioning: A thermodynamic approach. J.Chem.Inf.Comput.Sci. 41:120-128 (2001).

    PubMed  Google Scholar 

  9. R. Liu, H. Sun, and S.-S. So. Development of quantitative structure-property relationship models for early ADME evaluation in drug discovery. 2. Blood-brain barrier penetration. J.Chem.Inf.Comput.Sci. 41:1623-1632 (2001).

    PubMed  Google Scholar 

  10. D. E. Clark. Rapid calculation of polar molecular surface and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J.Pharm.Sci. 88:815-821 (1999).

    PubMed  Google Scholar 

  11. P. Crivori, G. Cruciani, P.-A. Carrupt, and B. Testa. Predicting blood-brain barrier permeation using three-dimensional molecular structure. J.Med.Chem. 43:2204-2216 (2000).

    PubMed  Google Scholar 

  12. J. M. Luco. Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using partial least-square (PLS) modeling. J.Chem.Inf.Comput.Sci. 46:299-303 (1999).

    Google Scholar 

  13. F. Lombardo, J. F. Blake, and W. J. Curatolo. Computation of brain-blood partitioning of organic solutes via free energy calculations. J.Med.Chem. 39:4750-4755 (1996).

    PubMed  Google Scholar 

  14. R. Kaliszan and M. Markuszewski. Brain-blood distribution described by a combination of partition coefficients and molecular mass. Int.J.Pharm. 45:9-16 (1996).

    Google Scholar 

  15. A. S. Kulkarni, A. J. Hopfinger, R. Osborne, L. H. Bruner, and E. D. Thompson. Prediction of eye irritation from organic chemicals using membrane-interaction QSAR analysis. Tox.Sci 59:335-345 (2001).

    Google Scholar 

  16. A. S. Kulkarni and A. J. Hopfinger. Membrane-interaction QSAR analysis: application to the estimation of eye irritation by organic compounds. Pharm.Res. 16:1244-1252 (1999).

    Google Scholar 

  17. A. Kulkarni, Y. Han, and A. J. Hopfinger. Predicting caco-2 cell permeation coefficients of organic molecules using membrane-interaction QSAR Analysis. J.Chem.Inf.Comput.Sci. 42:331-342 (2002).

    PubMed  Google Scholar 

  18. M. H. Abraham, K. Takacs-Novak, and R. C. Mitchell. On the partition of ampholytes: Application to blood-brain distribution. J.Pharm.Sci. 86:310-315 (1997).

    PubMed  Google Scholar 

  19. M. H. Abraham, H. S. Chadha, and R. C. Mitchell. Hydrogen bonding. 36. Determination of blood-brain barrier distribution using octanol-water partition coefficients. Drug Des.Discov. 13:123-131 (1995).

    PubMed  Google Scholar 

  20. R. A. Pearlstein. CHEMLAB-II Users Guide. CHEMLAB Inc., Chicago, Illinois 1988.

    Google Scholar 

  21. Hyperchem HyperChem. Release 4.5 for MS Windows. Hypercube Inc, Waterloo, Ontario, 1998.

  22. H. Hauser, I. Pascher, R. H. Pearson, and S. Sundell. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim.Biophys.Acta 650:21-51 (1981).

    PubMed  Google Scholar 

  23. Mopac Mopac 6.0 release notes. Frank J. Seiler Research laboratory, United States Air Force Academy, Colorado Springs, Colorado 1990.

  24. P. van der Ploeg and H. J. C Berendsen. Molecular dynamic simulation of a bilayer membrane. J.Chem.Phys. 76:3271-3276 (1982).

    Google Scholar 

  25. T. R. Stouch. Lipid membrane structure and dynamics studied by all atom molecular dynamics simulations of hydrated phospholipid bilayer. Mol.Simulation 1:335-362 (1993).

    Google Scholar 

  26. D. C. Doherty. Molsim Version 3.0 User's Guide. Chicago, The Chem 2 Group Inc., 1994.

    Google Scholar 

  27. M. Bloom, E. Evans, and O. Mouritsen. Physical properties of the fluid lipid-bilayer component of cell membranes. A perceptive (review). Quarterly Rev.Biophys. 24:293-397 (1991).

    Google Scholar 

  28. H. J. C. Berendsen, J. P. M. Postman, W. F. v. Gunsteren, A. D. Nola, and J. R. Haak. Molecular dynamics with coupling to an external bath. J.Chem.Phys. 81:3684-3690 (1984).

    Google Scholar 

  29. MSI. Cerius2, Molecular Simulations Users Guide, Ver 3.0. MSI, San Diego, California 1997.

    Google Scholar 

  30. ClogP Daylight Chemical Information Software, version 4.51. Daylight Chemical Information Inc., 1998, Los Altos, CA.

  31. D. Rogers and A. J. Hopfinger. Applications of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J.Chem.Inf.Comput.Sci. 34:854-866 (1994).

    Google Scholar 

  32. D. Rogers. WOLF 6.2 GFA Program, 1994.

  33. J. Friedman. Multivariate Adaptive Regression Splines; Department of Statistics. Stanford University, Stanford, Connecticut 1988.

    Google Scholar 

  34. H. V. D. Waterbeemd. Chemometric Methods in Molecular Design. VCH Publishers, Inc., New York, 1995.

    Google Scholar 

  35. D. E. Clark. Rapid calculation of polar molecular surface area and its application to prediction of transport phenomena. 1. Prediction of Intestinal Absorption. J.Pharm.Sci. 88:807-814 (1999).

    PubMed  Google Scholar 

  36. A. J. Hopfinger. Conformational Properties of Macromolecule., Academic Press, New York, 1973.

    Google Scholar 

  37. D. F. Veber, S. R. Johnson, H.-Y. Cheng, B. R. Smith, K. W. Ward, and K. D. Kopple. Molecular properties that influence the oral bioavailability of drug candidates. J.Med.Chem. 45:2615-2623 (2002).

    PubMed  Google Scholar 

  38. R. C. Young, R. C. Mitchell, T. H. Brown, C. R. Ganellin, R. Griffiths, M. Jones, K. K. Rana, D. Saunders, I. R. Smith, N. E. Sore, and T. J. Wilks. Development of a new physicochemical model for brain penetration and application to the design of centrally acting H2 receptor histamine antagonists. J.Med.Chem. 31:656-671 (1988).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Hopfinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iyer, M., Mishra, R., Han, Y. et al. Predicting Blood–Brain Barrier Partitioning of Organic Molecules Using Membrane–Interaction QSAR Analysis. Pharm Res 19, 1611–1621 (2002). https://doi.org/10.1023/A:1020792909928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020792909928

Navigation