Skip to main content
Log in

Microscale temperature measurement by scanning thermal microscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Scanning thermal microscopy (SThM) can measure thermal image with a nano-scale spatial resolution. However, there remains an issue in quantitative temperature measurement. We proposed an active temperature measurement method that provides a real temperature image by compensating a variation in contact thermal conductance. Performance of the active method was examined by a multi-function cantilever made with micro-fabrication process. Response test of the cantilever showed about 50 Hz cut off frequency for both passive and active method. Temperature measurement test indicated that sensitivity of heat flow detection was not enough to measure real temperature regardless of the thermal contact conductance. Imaging test demonstrated that the active method takes temperature image closer to real temperature distribution than the passive method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kondo et al., J. Appl. Phys., 79 (1996) 736.

    Article  CAS  Google Scholar 

  2. R. Ostermeir et al., IEEE Trans. Electron Devices., 39 (1992) 858.

    Article  CAS  Google Scholar 

  3. Y. S. Yu et al., ASME-DSC-Vol.59, Microelectromechanical Systems, 1996, p. 31.

    Google Scholar 

  4. A. Majumdar, J. P. Carrejo and J. Lai, Appl. Phys. Lett., 62 (1993) 2501.

    Article  CAS  Google Scholar 

  5. R. J. Pylkki, P. J. Moyer and P. W. West, Jpn. J. Appl. Phys., 33 (1994) 3785.

    Article  CAS  Google Scholar 

  6. O. Nakabeppu, M. Chandrachood, Y. Wu, J. Lai and A. Majumdar, Appl. Phys. Lett., 66 (1995) 694.

    Article  CAS  Google Scholar 

  7. J. Varesi and A. Majumdar, Appl. Phys. Lett., 72 (1998) 37.

    Article  CAS  Google Scholar 

  8. K. E. Goodson and M. Asheghi, Microscale Thermal Transport 1, (1997) 225.

    Article  CAS  Google Scholar 

  9. A. Majumdar, J. Lai, M. Chandrachood, O. Nakabeppu, Y. Wu and Z. Shi, Rev. Sci. Instrum., 66 (1995) 3584.

    Article  CAS  Google Scholar 

  10. O. Nakabeppu, M. Kajii, M. Igeta, H. Ishibashi and Y. Matsumoto, Proc. 5th ASME/JSME Joint Thermal Engineering Conference, (1999) AJTE99-6514.

  11. K. Luo, Z. Shi, J. Varesi and A. Majumdar, J. Vac. Sci. Technol. B, 15 (1997) 349.

    Article  CAS  Google Scholar 

  12. L. Shi, S. Plyasunov, A. Bachtold, P. L. McEuen, and A. Majumdar, Appl. Phys. Lett., 77 (2000) 4295.

    Article  CAS  Google Scholar 

  13. O. Nakabeppu, M. Igeta and T. Inoue, Thermal Science & Engineering, 7 (1999) 87.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakabeppu, O., Suzuki, T. Microscale temperature measurement by scanning thermal microscopy. Journal of Thermal Analysis and Calorimetry 69, 727–737 (2002). https://doi.org/10.1023/A:1020683217466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020683217466

Navigation