Skip to main content
Log in

Synergistic interactions in the microbial world

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

After several decades of microbiological research has focused on pure cultures, synergistic effects between different types of microorganisms find increasing interest. Interspecies interactions between prokaryotic cells have been studied into depth mainly with respect to syntrophic cooperations involved in methanogenic degradation of electron-rich substrates such as fatty acids, alcohols, and aromatics. Partners involved in these processes have to run their metabolism at minimal energy increments, with only fractions of an ATP unit synthesized per substrate molecule metabolized, and their cooperation is intensified by close proximity of the partner cells. New examples of such syntrophic activities are anaerobic methane oxidation by presumably methanogenic and sulfate-reducing prokaryotes, and microbially mediated pyrite formation. Syntrophic relationships have also been discovered to be involved in the anaerobic metabolization of amino acids and sugars where energetical restrictions do not necessarily force the partner organisms into strict interdependencies. The most highly developed cooperative systems among prokaryotic cells appear to be the structurally organized phototrophic consortia of the Chlorochromatium and Pelochromatium type in which phototrophic and chemotrophic bacteria not only exchange metabolites but also interact at the level of growth coordination and tactic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benz M, Schink B & Brune A (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl. Environ. Microbiol. 64: 4507–4512.

    PubMed  CAS  Google Scholar 

  • Biebl H & Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117: 9–16.

    Article  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Giesecke A, Amann R, Jorgensen BB, Witte U & Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623–626.

    Article  PubMed  CAS  Google Scholar 

  • Boone DR, Johnson RL & Liu Y (1989) Microbial ecology of interspecies hydrogen and formate transfer in methanogenic ecosystems. In: Hattori T, Ishida Y, Maruyama Y, Morita RY & Uchida A (Eds), Recent Advances in Microbial Ecology (pp 450–453). Japan Scient. Soc. Press, Tokyo, Japan.

    Google Scholar 

  • Bryant MP (1979) Microbial methane production - theoretical aspects. J. Anim. Sci. 48: 193–201.

    CAS  Google Scholar 

  • Cord-Ruwisch R, Lovley DR & Schink B (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl. Environ. Microbiol. 64: 2232–2236.

    PubMed  CAS  Google Scholar 

  • Emde R & Schink B (1990) Oxidation of glycerol, lactate, and propionate by Propionibacterium freudenreichii in a poisedpotential amperometric culture system. Arch. Microbiol. 153: 506–512.

    Article  CAS  Google Scholar 

  • Fröstl JM & Overmann J (1998) Physiology and tactic response of the phototrophic consortium 'Chlorochromatium aggregatum'. Arch. Microbiol. 169: 129–135.

    Article  PubMed  Google Scholar 

  • Fröstl JM & Overmann J (2000) Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch. Microbiol. 174: 50–58.

    Article  PubMed  Google Scholar 

  • Fukui M, Teske A, Assmus B, Muyzer G & Widdel F (1999) Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema). Arch. Microbiol. 172: 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S & Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 50: 1601–1609.

    PubMed  CAS  Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB & Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biochem. Cycl. 8: 451–463.

    Article  CAS  Google Scholar 

  • Kreikenbohm R & Pfennig N (1985) Anaerobic degradation of 3.4.5-trimethoxybenzoate by a defined mixed culture of Acetobacterium woodii, Pelobacter acidigallici and Desulfobacter postgatei. FEMS Microbiol. Ecol. 31: 29–38.

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP & Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382: 445–448.

    Article  CAS  Google Scholar 

  • Lovley DR, Fraga JL, Coates JD & Blunt-Harris EL (1999) Humics as an electron donor for anaerobic respiration. Environ. Microbiol. 1: 89–98.

    Article  PubMed  CAS  Google Scholar 

  • Paerl HW & Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb. Ecol. 31: 225–47.

    Article  PubMed  Google Scholar 

  • Pfennig N (1980) Syntrophic mixed cultures and symbiontic consortia with phototrophic bacteria: a review. In: Gottschalk G et al. (Eds) Anaerobes and Anaerobic Infections (pp 127–131). Fischer, Stuttgart, New York.

    Google Scholar 

  • Platen H & Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch. Microbiol. 149: 136–141.

    Article  PubMed  CAS  Google Scholar 

  • Platen H, Janssen PH & Schink B (1994) Fermentative degradation of acetone by an enrichment culture in membrane-separated culture devices and in cell suspensions. FEMS Microbiol. Lett. 122: 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperations in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61: 262–280.

    PubMed  CAS  Google Scholar 

  • Schink B & Stams AJM (2002) Syntrophy among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Schleifer KH (Eds) The Prokaryotes, 3rd edn. Springer, New York (in press).

    Google Scholar 

  • Schnürer A, Schink B & Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int. J. Syst. Bacteriol. 46: 1145–1152.

    Article  PubMed  Google Scholar 

  • Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66: 271–294.

    Article  PubMed  CAS  Google Scholar 

  • Valentine DL & Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ. Microbiol. 2: 477–484.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson TG, Topiwala HH & Hamer G (1974) Interactions in a mixed bacterial population growing on methane in continuous culture. Biotechnol. Bioeng. 16: 41–59.

    Article  PubMed  CAS  Google Scholar 

  • Winter J & Wolfe RS (1979) Complete degradation of carbohydrate to carbon dioxide and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri. Arch. Microbiol. 121: 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Zehnder AJB & Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 137: 420–432.

    PubMed  CAS  Google Scholar 

  • Zehnder AJB, Ingvorsen K & Marti T (1982) Microbiology of methane bacteria, In: Hughes DE et al. (Eds) Anaerobic Digestion (pp 45–68). Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Zindel U, Freudenberg W, Rieth M, Andreesen JR, Schnell J & Widdel F (1988) Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies. Arch. Microbiol. 150: 254–266.

    Article  CAS  Google Scholar 

  • Zinder SH & Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138: 263–272.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schink, B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81, 257–261 (2002). https://doi.org/10.1023/A:1020579004534

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020579004534

Keywords

Navigation