Skip to main content
Log in

General Decomposition of Radial Functions on Rn and Applications to N-Body Quantum Systems

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a generalization of the Fefferman–de la Llave decomposition of the Coulomb potential to quite arbitrary radial functions V on Rn going to zero at infinity. This generalized decomposition can be used to extend previous results on N-body quantum systems with Coulomb interaction to a more general class of interactions. As an example of such an application, we derive the high density asymptotics of the ground state energy of jellium with Yukawa interaction in the thermodynamic limit, using a correlation estimate by Graf and Solovej.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askey, R.: Refinements of Abel summability for Jacobi series, In: Harmonic Analysis on Homogeneous Spaces, Proc. Sympos. Pure Math. 26, Amer. Math. Soc. Providence, 1973, pp. 335-338.

  2. Askey, R.: Summability of Jacobi Series, Trans. Amer. Math. Soc. 179 (1973), 71-84.

    Google Scholar 

  3. Bach, V.: Error bound for the Hartree-Fock energy of atoms and molecules, Comm. Math. Phys. 147 (1992), 527-548.

    Google Scholar 

  4. Dirac, P. A. M.: Note on exchange phenomena in the Thomas-Fermi atom, Proc. Cambridge Philos. Soc. 26 (1931), 376-385.

    Google Scholar 

  5. Debye, P. and Hückel, E.: Zur Theorie der Elektrolyte, Phys. Z. 24 (1923), 185-206.

    Google Scholar 

  6. Fields, J. L. and Ismail, M. E.: On the positivity of some 1 F 2 's, SIAM J. Math. Anal. 6 (1975), 551-559.

    Google Scholar 

  7. Fefferman, C. L. and de la Llave, R.: Relativistic stability of matter, I, Rev. Mat. Iber. 2 (1986), 119-161.

    Google Scholar 

  8. Gneiting, T.: Radial positive definite functions generated by Euclid's hat, J. Multivariate Anal. 69 (1999), 88-119.

    Google Scholar 

  9. Gneiting, T.: Criteria of Pó lya type for radial positive definite functions, Proc. Amer. Math. Soc. 129 (2001), 2309-2318.

    Google Scholar 

  10. Grosse, H. and Martin, A.: Particle Physics and the Schro¨dinger Equation, Cambridge Univ. Press, 1997, p. 137.

  11. Graf, G. M. and Solevej, J. P.: A correlation estimate with applications to quantum systems with coulomb interaction, Rev. Math. Phys. 6 (1994), 977-997.

    Google Scholar 

  12. Hammersley, J. M. and Nelder, J. A.: Sampling from an isotropic Gaussian process, Proc. Cambridge Philos. Soc. 51 (1955), 652-662.

    Google Scholar 

  13. Hainzl, C. and Seiringer, R.: Bounds on one-dimensional exchange energies with application to lowest Landau band quantum mechanics, Lett. Math. Phys. 55 (2001), 133-142.

    Google Scholar 

  14. Lieb, E. H. and Narnhofer, H.: The thermodynamic limit for Jellium, J. Statist. Phys. 12 (1975), 291-310. Errata J. Statist. Phys. 14 (1976), 465.

    Google Scholar 

  15. Lieb, E. H. and Oxford, S.: Improved lower bound on the indirect Coulomb energy, Internat. J. Quantum Chem. 19 (1981), 427-439.

    Google Scholar 

  16. Mahan, G. D.: Many-Particle Physics, 2nd edn, Plenum Press, New York, 1990.

    Google Scholar 

  17. Pó lya, G.: Remarks on characteristic functions, In: Proc. Berkeley Sympos. Mathematical Statistics and Probability, Univ. California Press, 1949, pp. 115-123.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hainzl, C., Seiringer, R. General Decomposition of Radial Functions on Rn and Applications to N-Body Quantum Systems. Letters in Mathematical Physics 61, 75–84 (2002). https://doi.org/10.1023/A:1020204818938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020204818938

Navigation