Skip to main content
Log in

Process Physics: Inertia, Gravity and the Quantum

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Process Physics models reality as self-organising relational or semantic information using a self-referentially limited neural network model. This generalises the traditional non-process syntactical modelling of reality by taking account of the limitations and characteristics of self-referential syntactical information systems, discovered by Gödel and Chaitin, and the analogies with the standard quantum formalism and its limitations. In process physics space and quantum physics are emergent and unified, and time is a distinct non-geometric process. Quantum phenomena are caused by fractal topologicaldefects embedded in and forming a growing three-dimensional fractal process-space. Various features of the emergent physics are briefly discussed including:quantum gravity, quantum field theory, limited causality and the Born quantum measurement metarule, inertia, time-dilation effects, gravity and the equivalence principle, a growing universe with a cosmological constant, black holes and event horizons, and the emergence of classicality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cahill, R.T. and Klinger, C.M. (1997). Bootstrap Universe from Self-Referential Noise, preprint gr-qc/9708013.

  2. Cahill, R.T. and Klinger, C.M. (2000). Self-Referential Noise and the Synthesis of Three-Dimensional Space, Gen. Rel. Grav. 32, 529, gr-qc/9812083.

    Google Scholar 

  3. Cahill, R.T. and Klinger, C.M. (2000). Self-Referential Noise as a Fundamental Aspect of Reality, Proc. 2nd Int. Conf. on Unsolved Problems of Noise and Fluctuations (UPoN'99), eds. D. Abbott and L. Kish, Adelaide, Australia, 11-15th July 1999, Vol. 511, p. 43 (American Institute of Physics, New York), gr-qc/9905082.

    Google Scholar 

  4. Cahill, R.T., Klinger, C.M. and Kitto, K. Process Physics: Modelling Reality as Self-Organising Information, The Physicist (2000). 37, 191, gr-qc/0009023.

    Google Scholar 

  5. Chown, M. (2000). Random Reality, New Scientist, Feb 26, 165, No 2227, 24–28.

    Google Scholar 

  6. Wheeler, J.M. (1983). Law without Law, in Quantum Theory of Measurement, Wheeler, J.A. and Zurek, W.H., eds. (Princeton Univ. Press).

  7. Müller, B., Reinhardt, J. and Strickland, M.T. (1995). Neural Networks-An Introduction 2nd ed. (Springer Berlin).

    Google Scholar 

  8. Nagel, E. and Newman, J.R. (1958). Gödel's Proof (New York University Press).

    Google Scholar 

  9. Chaitin, G.J. (1990). Information, Randomness and Incompleteness, 2nd ed. (World Scientific Singapore).

    Google Scholar 

  10. Chaitin, G.J. (1999). The Unknowable (Springer Berlin).

    Google Scholar 

  11. Chaitin, G.J. (2001). Exploring Randomness (Springer Berlin).

    Google Scholar 

  12. Bak, P., Tang, C. and Wiesenfeld, K. (1987). Phys. Rev. Lett. 59, 381; (1988) Phys. Rev. A 38, 364.

    Google Scholar 

  13. [13] Schrödinger, E. (1945). What is Life? (Cambridge Univ. Press).

  14. Nicholis, G. and Prigogine, I. (1997). Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations (J. Wiley & Sons, New York).

    Google Scholar 

  15. Nagels, G. (1985). Gen. Rel. Grav. 17, 545.

    Google Scholar 

  16. Wheeler, J.A. (1964). Relativity, Groups and Topology, ed. by B. S. De Witt and C.M. De Witt (Gordon and Breach, New York).

    Google Scholar 

  17. Ogden, R.W. (1984). Non-Linear Elastic Deformations (Halstead Press, New York).

    Google Scholar 

  18. Manton, N.S. and Ruback, P. J. (1986). Skyrmions in Flat Space and Curved Space, Phys. Lett. B 181, 137.

    Google Scholar 

  19. Manton, N.S. Geometry of Skyrmions (1987). Commun. Math. Phys. 111, 469.

    Google Scholar 

  20. Gisiger, T. and Paranjape, M.B. (1998). Recent Mathematical Developments in the Skyrme Model, Physics Reports 36, 109.

    Google Scholar 

  21. Coleman, S., Hartle, J.B., Piran, T. and Weinberg, S. eds. (1991). Quantum Cosmology and Baby Universes (World Scientific, Singapore).

    Google Scholar 

  22. Percival, I.C. (1998). Quantum State Diffusion (Cambridge Univ. Press).

  23. Penrose, R. (1989). The Emperors New Mind: Concerning Computers, Minds and the Laws of Physics (Oxford University Press, Oxford).

    Google Scholar 

  24. Cahill, R.T. (1989). Aust. J. Phys. 42, 171; Cahill, R.T. (1992) Nucl. Phys. A 543, 63;Cahill, R.T. and Gunner, S.M. (1998). Fizika B 7, 171.

    Google Scholar 

  25. Marshak, R.E. (1993). Conceptual Foundations of Modern Particle Physics (World Scientific Singapore).

    Google Scholar 

  26. Dugne, J.-J., Fredriksson, S., Hansson, J. and Predazzi, E. (2000). Preon Trinity: A New Model of Leptons and Quarks, 2nd International Conference Physics Beyond The Standard Model: Beyond The Desert 99: Accelerator, Nonaccelerator And Space Approaches, Proceedings, edited by H.V. Klapdor-Kleingrothaus, I.V. Krivosheina. Bristol, IOP, 1236.

    Google Scholar 

  27. Bollabás, B. (1985). Random Graphs (Academic Press, London).

    Google Scholar 

  28. Riess, A. et al. (1998). Astron. J. 116, 1009(1998); Perlmutter, S. (1999). et al., Astrophys. J. 517, 565.

    Google Scholar 

  29. Toffoli, T. (1990), in Complexity, Entropy and the Physics of Information, p 301, Zurek W.H., ed. (Addison-Wesley).

  30. Hardy, L. (1992). Quantum Mechanics, Local Realistic Theories and Lorentz-Invariant Realistic Theories, Phys. Rev. Lett. 68, 2981.

    Google Scholar 

  31. Browning, D. and Myers, W.T., eds. (1998). Philosophers of Process, 2nd ed. (Fordham Univ. Press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahill, R.T. Process Physics: Inertia, Gravity and the Quantum. General Relativity and Gravitation 34, 1637–1656 (2002). https://doi.org/10.1023/A:1020120223326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020120223326

Navigation