Skip to main content
Log in

On the Generation of Sequential Unitary Gates from Continuous Time Schrödinger Equations Driven by External Fields

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In most of the proposals for quantum computers, a common feature is that the quantum circuits are expected to be made of cascades of unitary transformations acting on the quantum states. Such unitary gates are normally assumed to belong to a given discrete set of transformations. However, arbitrary superposition of quantum states may be achieved by utilizing a fixed number of transformations, each depending on a parameter. A framework is proposed to dynamically express these parameters directly in terms of the control inputs entering into the continuous time forced Schrouml;dinger equation.

PACS: 03.67.Lx; 03.65.Fd; 02.30.Mv; 02.30.Xy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Altafini, J.Math. Phys. 43(5), 2051-2062 (2002).

    Google Scholar 

  2. C. Altafini, ''Parameter differentiation and quantum state decomposition for time varying Schrödinger equations.'' Preprint arXiv:quant-ph/0201034, 2002.

  3. D. Cory, R. Laflamme, E. Knill, L. Viola, T. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Shart, G. Teklemarian, Y. Weinstein, and Z. Zurek, Prog.Phys. 48, 875 (2000).

    Google Scholar 

  4. J. Craig, Introduction to Robotics 2nd ed. (Addison Wesley, Reading, MA, 1989).

    Google Scholar 

  5. D. D'Alessandro, ''Uniform finite generation of compact Lie groups and universal quantum gates.'' quant-ph/0111133, 2001.

  6. D. Deutsch, A. Barenco, and A. Ekert, Proc. R. Soc. London, A 449, 669-677 (1995).

    Google Scholar 

  7. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Magnetic Resonance in One and Two Dimensions (Oxford Science Publications, 1987).

  8. R. Gilmore, Lie groups, Lie algebras, and Some of Their Applications (Wiley, New York, 1974).

    Google Scholar 

  9. S. Lloyd, Phys.Rev.Lett. 75, 346-349 (1995).

    Google Scholar 

  10. W. Magnus, Comm.Pure and App.Maths. VII, 649-673 (1954).

    Google Scholar 

  11. J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Vol. 17, 2nd ed. Texts in Applied Mathematics (Springer Verlag, 1999).

  12. M. Mehring, High Resolution NMR in Solids (Springer Verlag, 1976).

  13. P. Moan, J. Oteo, and J. Ros, J. Phys. A 32, 5133-5139 (1999).

    Google Scholar 

  14. F. Murnaghan, The Unitary and Rotation Groups (Spartan, Washington, DC, 1962).

    Google Scholar 

  15. K. Nemoto, Generalized coherent states for SU(n) systems. J. Phys. A: Mathematics and General, 33 3493-3505 (2000).

    Google Scholar 

  16. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  17. A. M. Perelomov, Generalized Coherent States and Their Applications Texts and monographs in Physics (Springer Verlag, 1986).

  18. V. Ramakrishna, K. L. Flores, H. Rabitz, and R. Ober, Phys. Rev. A 62(5), 3409 (2000).

    Google Scholar 

  19. M. Reck, A. Zeilinger, H. Bernstein, and P. Bertani, Phys. Rev. Lett. 73(1), 58-61 (1994).

    Google Scholar 

  20. S. G. Schirmer, In Proc.40th Conference on Decision and Control, Orlando, Florida (2001).

  21. S. G. Schirmer, A. D. Greentree, V. Ramakrishna, and H. Rabitz, ''Quantum control using sequences of simple control pulses.'' Preprint quant-ph/0105155, 2001.

  22. R. H. V. Ramakrishna, Phys. Rev. A 54, 1715-1716 (1996).

    Google Scholar 

  23. V. S. Varadarajan, Lie groups, Lie algebras and Their Representations (Springer Verlag, 1984).

  24. N. Weaver, J. Math. Phys. 41(1/5), 240-243 and 3300 (2000).

    Google Scholar 

  25. J. Wei, J. Math. Phys. 4, 1337-1341 (1963).

    Google Scholar 

  26. J. Wei and E. Norman, Proc.of the Amer.Math. Soc. 15, 327-334 (1964).

    Google Scholar 

  27. W. Zhang, D. Feng, and R. Gilmore, Rev. of Modern Physics 62, 867-927 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altafini, C. On the Generation of Sequential Unitary Gates from Continuous Time Schrödinger Equations Driven by External Fields. Quantum Information Processing 1, 207–224 (2002). https://doi.org/10.1023/A:1019825109040

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019825109040

Navigation