Skip to main content
Log in

Studies on the redox behaviour of La1.867Th0.100CuO4 and its catalytic performance for NO decomposition

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

La1.867Th0.100CuO4 was prepared by means of the citric acid complexing method. The reduction–oxidation (redox) properties of this composite oxide have been investigated by using the XRD, TGA, EPR, TPD, and SEM methods. The fresh (non-reduced) La1.867Th0.100CuO4 catalyst is single phase with tetragonal K2NiF4-type structure. There were three reduction steps observed over La1.867Th0.100CuO4 in the temperature ranges of 25–100, 100–300, and 300–500 °C, respectively. After reduction at 300 °C, the material still retained its original single phase but there were oxygen vacancies generated in the lattice. After reduction at 500 °C, it decomposed to a mixture of oxides. In the course of reduction, trapped electrons were generated. During the oxidation of the reduced sample, O 2 was detected. Apparently, oxygen vacancies are able to stabilise O 2 on the surface of the -1ptcatalyst. NO adsorption on both the fresh and reduced La1.867Th0.100CuO4 samples generated NO radicals and O 2 species. On a La1.867Th0.100CuO4 sample reduced at 300 °C, [O2NO2]2− was generated in NO adsorption and decomposed to N2 and O2− at ca. 730 °C. After reduction, the O 2 inside the La1.867Th0.100CuO4 lattice became more mobile and participated in the decomposition of [O2NO2]2−. The fresh (non-reduced) La1.867Th0.100CuO4 sample with cation defects in its lattice shows higher NO decomposition activity than the fresh La2CuO4 sample in which there are no cation defects. The 300 °C-reduced La1.867Th0.100CuO4 with cation defects and oxygen vacancies is more active than the fresh one for NO decomposition. The redox action between Cu+ and Cu2+ is an essential process for NO decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tabata and M. Misono, Catal. Today 8 (1990) 249.

    Google Scholar 

  2. Z.L. Yu, L.Z. Gao, S.Y. Yuan and Y. Wu, J. Chem. Soc. Faraday Trans. 88 (1992) 3245.

    Google Scholar 

  3. S.D. Peter, E. Garbowski, N. Guilhaume, V. Perrichon and M. Primet, Catal. Lett. 54 (1998) 79.

    Google Scholar 

  4. L.Z. Gao, Z.L. Yu and Y. Wu, in: Proc. 34th IUPAC Congr., 1993, p. 730.

  5. L.Z. Gao, Z.L. Yu and Y. Wu, Acta Chim. Sinica 55 (1997) 56.

    Google Scholar 

  6. M. Anpo, M. Matsuoka, Y. Shioya, H. Yamashita, E. Giamello, C. Morterra, M. Che, H.H. Paterson, S. Webber, S. Oullete and M.A. Fox, J. Phys. Chem. 98 (1994) 5744.

    Google Scholar 

  7. E. Giamello, D. Murphy, G. Magacca, C. Morterra, Y. Shioya, T. Nomura and M. Anpo, J. Catal. 136 (1992) 510.

    Google Scholar 

  8. J.W. London and A.T. Bell, J. Catal. 31 (1973) 96.

    Google Scholar 

  9. N. Mizuno, M. Yamato and M. Tanaka, Chem. Mater. 1 (1989) 232.

    Google Scholar 

  10. V.I. Pârvulescu, P. Grange and B. Delmon, Catal. Today 46 (1998) 233.

    Google Scholar 

  11. G.J. Millar, A. Canning, G. Rose, B. Wood, L. Trewartha and I.D.R. Mackinnon, J. Catal. 183 (1999) 169.

    Google Scholar 

  12. E.S.J. Lox and B.H. Engler, Handbook of Heterogeneous Catalysis, Vol. 4, eds. G. Ertl, H. Knözinger and J. Weitkamp (1997) p. 1628.

  13. L.K. Gushee and R. Ward, J. Am. Chem. Soc. 79 (1957) 5601.

    Google Scholar 

  14. D.C. Harris and T.A. Hewton, J. Solid State Chem. 69 (1987) 182.

    Google Scholar 

  15. C.T. Au and X.P. Zhou, J. Chem. Soc. Faraday Trans. 92 (1996) 1793.

    Google Scholar 

  16. C. Morterra, E. Giamello, G. Gerrato, G. Centi and S. Perathoner, J. Catal. 179 (1989) 111.

    Google Scholar 

  17. A. Martínez-Arias, J. Sorria, J.C. Conesa, X.L. Seoane, A. Arcoya, and R. Cataluña, J. Chem. Soc. Faraday Trans. 91 (1995) 1679.

    Google Scholar 

  18. C. Oliva, L. Forni, A.M. Ezerets, I.E. Mukovozov and A.V. Vishniakov, J. Chem. Soc. Faraday Trans. 94 (1998) 587.

    Google Scholar 

  19. Z.X. Zhang and K.J. Klabunde, Inorg. Chem. 31 (1992) 1706.

    Google Scholar 

  20. Z. Zhao, X.G. Yang and Y. Wu, Sci. China B 28 (1998) 31.

    Google Scholar 

  21. M. Iwamoto, H. Furukawa and S. Kagawa, in: New Developments in Zeolite Science and Technology, Stud. Surf. Sci. Catal., Vol. 28, eds. Y. Murakami, A. Iijima and J.W. Ward (Elsevier, Amsterdam, 1986) p. 943.

    Google Scholar 

  22. Z. Sojka, M. Che and E. Giamello, J. Phys. Chem. B 101 (1997) 4831.

    Google Scholar 

  23. H. Yasuda, T. Nitadori, N. Mizuno and M. Misono, Bull. Chem. Soc. Jpn. 66 (1993) 3492.

    Google Scholar 

  24. F. Munakata, Y. Akimune, Y. Shichi, M. Akutsu, H. Yamaguchi and Y. Inoue, J. Chem. Soc. Chem. Commun. (1997) 63.

  25. J.Y. Lin, A.T.S. Wee, K.L. Tan, K.G. Neoh and W.K. Teo, Inorg. Chem. 32 (1993) 5322.

    Google Scholar 

  26. H.X. Dai, C.F. Ng and C.T. Au, Catal. Lett. 57 (1999) 115.

    Google Scholar 

  27. A. Gervasini, P. Carniti and V. Ragaini, Appl. Catal. B 22 (1999) 201.

    Google Scholar 

  28. M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine and S. Kagawa, J. Phys. Chem. 95 (1991) 3727.

    Google Scholar 

  29. Z. Chajar, M. Primet and H. Praliaud, J. Catal. 180 (1998) 279.

    Google Scholar 

  30. M. Shelf, Chem. Rev. 95 (1995) 209.

    Google Scholar 

  31. Y.F. Chang and J.G. McCarty, J. Catal. 178 (1998) 408.

    Google Scholar 

  32. J. Valyon and W.K. Hall, Catal. Lett. 19 (1993) 109.

    Google Scholar 

  33. J. Valyon and W.K. Hall, J. Catal. 143 (1993) 520.

    Google Scholar 

  34. J. Valyon, W.S. Millman and W.K. Hall, Catal. Lett. 24 (1994) 215.

    Google Scholar 

  35. J. Sarkany, J.L. D'Itri and W.M.H. Sachtler, Catal. Lett. 16 (1992) 241.

    Google Scholar 

  36. G.D. Lei, B.J. Adelman, J. Sarkany and W.M.H. Sachtler, Appl. Catal. B 5 (1995) 245.

    Google Scholar 

  37. S.C. Larsen, A.W. Aylor, A.T. Bell and J.A. Reimer, J. Phys. Chem. 98 (1994) 11533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, L., Au, C. Studies on the redox behaviour of La1.867Th0.100CuO4 and its catalytic performance for NO decomposition. Catalysis Letters 65, 91–98 (2000). https://doi.org/10.1023/A:1019077507513

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019077507513

Navigation