Skip to main content
Log in

Signal-transfer modeling for regional assessment of forest responses to environmental changes in the southeastern United States

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Stochastic transfer of information in a hierarchy of simulators is offered as a conceptual approach for assessing forest responses to changing climate and air quality across 13 southeastern states of the USA. This assessment approach combines geographic information system and Monte Carlo capabilities with several scales of computer modeling for southern pine species and eastern deciduous forests. Outputs, such as forest production, evapotranspiration and carbon pools, may be compared statistically for alternative equilibrium or transient scenarios providing a statistical basis for decision making in regional assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Subcommittee on Global Change Research, Our Changing Planet. The FY 1998 Global Change Research Program (Global Change Research Information Office, University Center, MI, 1997).

    Google Scholar 

  2. J. Ehleringer and C. Field, eds., Scaling Physiological Processes: Leaf to Globe (Academic Press, San Diego, 1993).

    Google Scholar 

  3. A.W. King, Considerations of scale and hierarchy, in: Ecological Integrity and the Management of Ecosystems, eds. S. Woodley, G. Francis and J. Key (Lewis, Chelsea, MI, 1993) pp. 19-45.

    Google Scholar 

  4. R.J. Luxmoore, A.W. King and M.L. Tharp, Approaches to scaling up physiologically based soil-plant models in space and time, Tree Physiol. 9 (1991) 281-292.

    Google Scholar 

  5. E.B. Rastetter, M.G. Ryan, G.R. Shaver, J.M. Melillo, K.J. Nadelhoffer, J.E. Hobbie and J.D. Aber, A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposition, Tree Physiol. 9 (1991) 101-126.

    CAS  Google Scholar 

  6. A.D. McGuire, J.M. Melillo, L.A. Joyce, D.W. Kicklighter, A.L. Grace, B. Moore and C.J. Vorosmarty, Interactions between C and N dynamics in estimating net primary productivity for potential vegetation in North America, Global Biogeochem. Cycles 6 (1992) 101-124.

    Article  CAS  Google Scholar 

  7. S.G. McNulty, J.M. Vose and W.T. Swank, Scaling predicted pine forest hydrology and productivity across the southern United States, in: Scale in Remote Sensing and GIS, eds. D.A. Quattrochi and M.F. Goodchild (CRC Lewis, Boca Raton, FL, 1997) pp. 187-209.

    Google Scholar 

  8. W. Cramer, D.W. Kicklighter, A. Bondeau, B. Moore III, G. Churkina, B. Nemry, A. Ruimy and A.L. Schloss, The Participants of the Potsdam NPP model intercomparison. Comparing global models of terrestrial net primary productivity (NPP): overview and key results, Global Change Biol. 5 (1999) 1-15.

    Article  Google Scholar 

  9. R.J. Luxmoore and D.D. Baldocchi, Modelling interactions of carbon dioxide, forests, and climate, in: Biotic Feedbacks in the Global Climate System: Will the Warming Feed the Warming?, eds. G.M. Woodwell and F.T. MacKenzie (Oxford University Press, 1995) pp. 283-303.

  10. R.J. Luxmoore, M.L. Tharp and D.C. West, Simulating the physiological basis of tree ring responses to environmental changes, in: Process Modeling of Forest Growth Responses to Environmental Stress, eds. R.K. Dixon, R.S. Meldahl, G.A. Ruark and W.G. Warren (Timber Press, Portland, Oregon, 1990) pp. 393-401.

    Google Scholar 

  11. R.J. Luxmoore, S.M. Pearson, M.L. Tharp and S.B. McLaughlin, Scaling up physiological responses of loblolly pine to ambient ozone exposure under natural weather variation, in: The Productivity and Sustainability of Southern Forest Ecosystems in a Changing Environment, eds. R.A. Mickler and S. Fox (Springer, New York, 1998) Ch. 23, pp. 407-428.

    Google Scholar 

  12. R.A. Mickler and S. Fox, The Productivity and Sustainability of Southern Forest Ecosystems in a Changing Environment (Springer, New York, 1998).

    Google Scholar 

  13. D.W. Johnson and S.E. Lindberg, eds., Atmospheric Deposition and Forest Nutrient Cycling: A Synthesis of the Integrated Forest Study (Springer, New York, 1991).

    Google Scholar 

  14. M.D. McKay, W.J. Conover and R.J. Beckman, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21 (1997) 239-245.

    Article  Google Scholar 

  15. R.H. Gardner, B. Röjder and U. Bergström, PRISM, A systematic method for determining the effect of parameter uncertainties on model predictions, Studsvik Energiteknik AB report NW-83-555, Nyköping, Sweden (1983).

    Google Scholar 

  16. Y.P. Wang and P.G. Jarvis, Description and validation of an array model-MAESTRO, Agricultural and Forest Meteorology 51 (1990) 257-280.

    Article  Google Scholar 

  17. P.G. Jarvis, C.V.M. Barton, P.M. Dougherty, R.O. Teskey and J.M. Massheder, MAESTRO, terrestrial, materials, health, and visibility effects, in: Acid Deposition: State of Science and Technology, National Acid Precipitation Assessment Program, Vol. 3, ed. P.M. Irving (Govt. Printing Office, Washington, DC, 1991) pp. 17-178.

    Google Scholar 

  18. V.C. Baldwin, P.M. Dougherty and H.E. Burkhart, A linked model for simulating stand development and growth processes of loblolly pine, in: The Productivity and Sustainability of Southern Forest Ecosystems in a Changing Environment, eds. R.A. Mickler and S. Fox (Springer, New York, 1998) pp. 305-325.

    Google Scholar 

  19. R.J. Luxmoore, W.W. Hargrove, M.L. Tharp, W.M. Post, M.W. Berry, K.S. Minser, W.P. Cropper, Jr., D.W. Johnson, B. Zeide, R.L. Amateis, H.E. Burkhart, V.C. Baldwin, Jr. and K.D. Peterson, Addressing multi-use issues in sustainable forest management with signal-transfer modeling, Forest Sci. (in review).

  20. R.J. Luxmoore, Modeling chemical transport, uptake and effects in the soil-plant-litter system, in: Biogeochemical Cycling Processes in Walker Branch Watershed, eds. D.W. Johnson and R.I. Van Hook (Springer, New York, 1989) pp. 351-384.

    Google Scholar 

  21. R.J. Luxmoore, A source-sink framework for coupling water, carbon, and nutrient dynamics of vegetation, Tree Physiology 9 (1991) 267-280.

    Google Scholar 

  22. R.J. Luxmoore, T. Grizzard and R.H. Strand, Nutrient translocation in the outer canopy and understory of an eastern deciduous forest, Forest Science 27 (1981) 505-518.

    Google Scholar 

  23. W.P. Cropper, Jr. and H.L. Gholz, Simulation of the carbon dynamics of a Florida slash pine plantation, Ecological Modelling 66 (1993) 213-249.

    Article  Google Scholar 

  24. W.P. Cropper, Jr. and H.L. Gholz, Constructing a seasonal carbon balance for a forest ecosystem, Climate Research 3 (1993) 7-12.

    Google Scholar 

  25. W.P. Cropper, Jr. and H.L. Gholz, Evaluating potential response mechanisms of a forest stand to fertilization and night temperature: A case study using Pinus elliottii, Ecological Bulletins 43, Stockholm (1994).

  26. T.R. Loveland, J.W. Merchant, D.O. Ohlen and J.F. Brown, Development of a land-cover characteristics database for the conterminous US, Photogrammetric Engineering & Remote Sensing 57 (1991) 1453-1463.

    Google Scholar 

  27. National Cartography and GIS Center, State soil geographic (STATSGO) data base, Misc. Pub. No. 1492, USDA Natural Resources Conservation Service, Fort Worth, TX (1991).

    Google Scholar 

  28. NCDC, 1961-1990 Monthly Station Normals Tape, TD 9641 (National Climatic Data Center, US Department of Commerce, Washington, DC, 1992).

    Google Scholar 

  29. C. Daly, R.P. Neilson and D.L. Phillips, A statistical-topographic model for mapping climatological precipitation over mountainous terrain, J. Appl. Meteorology 33 (1994) 140-148.

    Article  Google Scholar 

  30. T.G.F. Kittel, N.A. Rosenbloom, T.H. Painter and D.S. Schimel, The VEMAP Modeling Participants, The VEMAP integrated database for modeling United States ecosystem/vegetation sensitivity to global change, J. Biogeography 22 (1995) 857-862.

    Article  Google Scholar 

  31. H.R. Delcourt, D.C. West and P.A. Delcourt, Forests of the southeastern United States: quantitative maps for aboveground woody biomass, carbon, and dominance of major tree taxa, Ecology 62 (1981) 879-887.

    Article  Google Scholar 

  32. W.W. Hargrove and R.J. Luxmoore, A spatial clustering technique for the identification of customizable ecoregions, Environmental Systems Research Institute, Redlands, CA (1997). (http://www.esri. com/base/common/userconf/proc97/PROC97/TO250/PAP226/P226. HTM)

    Google Scholar 

  33. W.W. Hargrove and R.J. Luxmoore, A new high-resolution national map of vegetation ecoregions produced empirically using multivariate spatial clustering, Environmental Systems Research Institute, Redlands, CA (1998). (http://www.esri.com/library/userconf/proc98/PROCEED/TO350/PAP333/P333.HTM)

    Google Scholar 

  34. USDA, Land Resource Regions and Major Land Resource Areas of the United States, Agriculture Handbook, Vol. 296 (Soil Conservation Service, USDA, Washington, DC, 1981).

    Google Scholar 

  35. H.H. Shugart and D C. West, Forest succession models, BioScience 30 (1980) 308-313.

    Article  Google Scholar 

  36. J. Pastor and W.M. Post, Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles, Biogeochemistry 2 (1986) 3-27.

    Article  Google Scholar 

  37. W.M. Post and J. Pastor, An individual-based forest ecosystem model for projecting forest response to nutrient cycling and climate changes, in: Forest Simulation Systems, Bulletin 1927, eds. L. Wensel and G. Biging (University of California, Division of Agriculture and Natural Resources, Berkeley, CA, 1990) pp. 61-74.

    Google Scholar 

  38. B. Zeide, Height growth pattern for southern pine species, Forest Ecology and Management 118 (1999) 183-196.

    Article  Google Scholar 

  39. S. Liu, R. Munson, D.W. Johnson, S. Gherini, K. Summers, R. Hudson, K. Wilkinson and L.F. Pitelka, The nutrient cycling model (NuCM): Overview and application, in: Atmospheric Deposition and Forest Nutrient Ecological, eds. D.W. Johnson and S.E. Lindberg (Springer, New York, 1991) Ch. 14, pp. 583-609.

    Google Scholar 

  40. S. Liu, R. Munson, D. Johnson, S. Gherini, K. Summers, R. Hudson, K. Wilkinson and L. Pitelka, Application of a nutrient cycling model (NuCM) to northern mixed hardwood and southern coniferous forest, Tree Physiol. 9 (1991) 173-182.

    CAS  Google Scholar 

  41. D.W. Johnson, W.T. Swank and J.M. Vose, Simulated effects of atmospheric sulfur deposition on nutrient cycling in a mixed deciduous forest, Biogeochemistry 23 (1993) 169-196.

    Article  CAS  Google Scholar 

  42. D.W. Johnson, W.T. Swank and J.M. Vose, Effects of liming on soils and streamwaters in a deciduous forest: Comparison of field results and simulations, J. Environ. Qual. 24 (1995) 1104-1117.

    Article  CAS  Google Scholar 

  43. D.W. Johnson, D. Binkley and P. Conklin, Simulated effects of atmospheric deposition, harvesting, and species change on nutrient cycling in a loblolly pine forest, For. Ecol. Manag. 76 (1995) 29-45.

    Article  Google Scholar 

  44. D.W. Johnson, R.B. Susfalk and W.T. Swank, Simulated effects of atmospheric deposition and species change on nutrient cycling in loblolly pine and mixed deciduous forests, in: The Productivity and Sustainability of Southern Forest Ecosystems in a Changing Environment, eds. R.A. Mickler and S. Fox (Springer, New York, 1998) Ch. 27, pp. 503-524.

    Google Scholar 

  45. H.E. Burkhart, K.D. Farrar, R.L. Amateis and R.F. Daniels, Simulation of individual tree growth and stand development in loblolly pine plantations on cutover, site-prepared areas, FWS-1-87, Virginia Polytechnic Institute and State University, School of Forestry and Wildlife Resources, Blacksburg, VA (1987).

    Google Scholar 

  46. H.E. Burkhart, D.C. Cloeren and R.L. Amateis, Yield relationships in unthinned loblolly pine plantations on cutover, site-prepared lands, Southern J. Appl. Forestry 9 (1985) 84-91.

    Google Scholar 

  47. H.E. Burkhart, Data collection and modeling approaches for forest growth and yield prediction, in: Predicting Forest Growth and Yield: Current Issues, Future Prospects, Contribution 58, eds. H.N. Chappell and D.A. Maguire (Institute of Forest Resources, University of Washington, Seattle, Washington, 1987) pp. 3-16.

    Google Scholar 

  48. B. Zeide, Standardization of growth curves, J. Forestry 76 (1978) 289-292.

    Google Scholar 

  49. B. Zeide, A parsimonious number of growth curves, Northern J. Appl. Forestry 10 (1993) 132-136.

    Google Scholar 

  50. B. Zeide, To construct or not to construct more site index curves?, Western J. Appl. Forestry 9 (1994) 37-40.

    Google Scholar 

  51. M.W. Berry and K.S. Minser, Higher order interpolation using the modified Shepard method, ACM Transactions on Mathematical Software 25 (1999) 353-366.

    Article  Google Scholar 

  52. R.J. Renka, Multivariate interpolation of large sets of scattered data, ACM Trans. Math. Software 14 (1988) 139-148.

    Article  Google Scholar 

  53. R.J. Luxmoore, Reflections on databases, simabases and infobases, GIS World 9 (1996) 26.

    Google Scholar 

  54. R.H. Gardner, W.W. Hargrove, M.G. Turner and W.H. Romme, Climate change, disturbances, and landscape dynamics, in: Global Change and Terrestrial Ecosystems, International Geosphere-Biosphere Programme Book Series, Vol. 2, eds. B. Walker and W. Steffen (Cambridge University Press, Cambridge, 1996) pp. 149-172.

    Google Scholar 

  55. D.N. Wear, M.G. Turner and R.O. Flamm, Ecosystem management with multiple owners: landscape dynamics in a Southern Appalachian watershed, Ecological Applications 6 (1996) 1173-1188.

    Article  Google Scholar 

  56. G.G. Langton, Studying artificial life with cellular automata, Physica 22D (1986) 120-149.

    CAS  Google Scholar 

  57. M.W. Berry, R.O. Flamm, B.C. Hazen and R.L. MacIntyre, Lucas: A system for modeling land-use change, IEEE Computational Science and Engineering 3 (1996) 24-35.

    Article  Google Scholar 

  58. M.W. Berry and K.S. Minser, Distributed land-cover change simulation, in: Proc. 5th Int. Workshop on Advances in Geographic Information Systems, eds. R. Laurini, P. Bergougnoux, K. Makki and N. Pissinou (ACM, New York, 1997) pp. 67-70.

    Google Scholar 

  59. M.G. Turner, D.N. Wear and R.O. Flamm, Land ownership and land-cover change in the Southern Appalachian Highlands and the Olympic Peninsula, Ecological Applications 6 (1996) 1150-1172.

    Article  Google Scholar 

  60. B.C. Hazen and M.W. Berry, The simulation of land-cover change using a distributed computing environment, Simulation Practice and Theory 5 (1997) 489-514.

    Article  Google Scholar 

  61. I.W. Hardie and P.J. Parks, Land use with heterogeneous land quality: An application of an area base model, Am. J. Agr. Econ. 79 (1997) 299-310.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luxmoore, R.J., Hargrove, W.W., Tharp, M.L. et al. Signal-transfer modeling for regional assessment of forest responses to environmental changes in the southeastern United States. Environmental Modeling & Assessment 5, 125–137 (2000). https://doi.org/10.1023/A:1019005510316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019005510316

Navigation