Skip to main content
Log in

The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A NiO/MgO catalyst prepared by impregnation, which reduced in H2 had very high CO yield and stability in CO2 reforming of methane, was investigated by XPS, XRD, BET and pulse-MS response. This catalyst was compared to that obtained by mechanical mixing of powders of the two oxides. It was found that the entire NiO formed a solid solution with MgO in the former catalyst, while only a fraction of NiO formed a solid solution with MgO in the latter one. BET revealed that, in contrast to NiO and MgO, the NiO/MgO catalyst prepared by impregnation had a high stability to sintering, because its surface area hardly changed during calcination from 1.5 to 20 h at 800°C. In the same catalyst, a surface enrichment in MgO, which was greater after than before reduction, was detected. Compared to MgO or NiO, this catalyst had a lower Mg(2p) and a higher Ni(2p3/2) binding energy. This indicates that electron transfer from NiO to MgO took place, which, increasing the binding between the two oxides, might be responsible for the resistance of the solid solution to sintering. Because of the interactions between Ni and Mg, the clustering of Ni, which stimulates carbon deposition is inhibited. This explains the high stability of the CO yield in the CO2 reforming of methane over the NiO/MgO catalyst prepared by impregnation. The pulse-MS response suggested that the decompositions of CO2 to CO and O and of CH4 to C and H are involved in the reaction mechanism of CO2 reforming of methane over the reduced NiO-MgO solid solution catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.T. Ashcroft, A.K. Cheetham, M.L.H. Green and P.D.F. Vernon, Nature 352 (1991) 225.

    Article  CAS  Google Scholar 

  2. J.T. Richardson and S.A. Paripatyadar, Appl. Catal. 61 (1990) 293.

    Article  CAS  Google Scholar 

  3. O. Yamazaki, T. Nozaki, K. Omata and K. Fujimota, Chem. Lett. (1992) 1953.

  4. A.M. Gadalla and M.E. Sommer, Chem. Eng. Sci. 44 (1989) 2825.

    Article  CAS  Google Scholar 

  5. A.M. Gadalla and B. Bower, Chem. Eng. Sci. 43 (1988) 3049.

    Article  CAS  Google Scholar 

  6. J.R. Rostrup-Nielsen and J.-H.B. Hansen, J. Catal. 144 (1993) 38.

    Article  CAS  Google Scholar 

  7. G.J. Kim, D.S. Cho, K.H. Kim and J.H. Kim, Catal. Lett. 28 (1994) 41.

    Article  CAS  Google Scholar 

  8. J.R. Rostrup-Nielsen, Stud. Surf. Sci. Catal. 36 (1988) 73.

    Article  CAS  Google Scholar 

  9. J.R. Rostrup-Nielsen, J. Catal. 85 (1984) 31.

    Article  CAS  Google Scholar 

  10. Z. Zhang and X.E. Verykios, J. Chem. Soc. Chem. Commun. (1995) 71.

  11. E. Ruckenstein and Y.H. Hu, J. Catal. 161 (1996) 55.

    Article  CAS  Google Scholar 

  12. E. Ruckenstein and Y.H. Hu, Appl. Catal. 133 (1995) 149.

    Article  CAS  Google Scholar 

  13. Y.H. Hu and E. Ruckenstein, Catal. Lett. 36 (1996) 145.

    Article  CAS  Google Scholar 

  14. E. Ruckenstein and Y.H. Hu, Appl. Catal., in press.

  15. H.B. Nussler and O. Kubaschewski, Z. Phys. Chem. (NF) 121 (1980) 187.

    Google Scholar 

  16. E.G. Vrieland and P.W. Selwood, J. Catal. 3 (1964) 539.

    Article  CAS  Google Scholar 

  17. A. Cimino, M. Schiavello and F.S. Stone, Discussion Faraday Soc. 41 (1966) 350.

    Article  Google Scholar 

  18. A.F. Shestakov, V.A. Matishak, A.A. Kadushin and O.V. Krylov, Kinet.Catal. 20 (1979) 151.

    Google Scholar 

  19. A. Zecchina, G. Spoto and S. Coluccia, J. Chem. Soc. Faraday I 80 (1984) 1875.

    Article  CAS  Google Scholar 

  20. A. Zecchina, G. Spoto and S. Coluccia, J. Chem. Soc. Faraday I 80 (1984) 1891.

    Article  CAS  Google Scholar 

  21. F. Arena, A. Parmaliana, N. Mondello, F. Frusteri and N. Giordano, Langmuir 7 (1991) 1555.

    Article  CAS  Google Scholar 

  22. A. Parmaliana, F. Arena, F. Frusteri and N. Giordano, J. Chem. Soc. Faraday Trans. 86 (1990) 2663.

    Article  CAS  Google Scholar 

  23. G.C. Bond and S.P. Sarsam, Appl.Catal. 38 (1988) 365.

    Article  CAS  Google Scholar 

  24. T. Borowiecki, Appl. Catal. 10 (1984) 273.

    Article  CAS  Google Scholar 

  25. Y.H.Hu and E. Ruckenstein, J. Catal. 163 (1996) 306.

    Article  Google Scholar 

  26. Y.H. Hu and E. Ruckenstein, Langmuir, submitted.

  27. F. Arena, B.A. Horrell, D.L. Cocke, A. Parmaliana and N. Giordano, J. Catal. 132 (1991) 58; S. Narayanan and G. Sreekanth, J. Chem. Soc. Faraday Trans. I 85 (1989) 3785.

    Article  CAS  Google Scholar 

  28. E.P. Barret, L.G. Joyner and P.H. Halenda, J. Am. Chem. Soc. 73 (1951) 373.

    Article  Google Scholar 

  29. K.S. Kimand N. Winograd, Surf. Sci. 43 (1974) 625.

    Article  Google Scholar 

  30. J.S. Corneille, J.W. He and D.W. Goodman, Surf. Sci. 306 (1994) 269.

    Article  CAS  Google Scholar 

  31. F. Arena, F. Frusteri, A. Parmaliana, L. Plyasova and A.N. Shmakov, J. Chem. Soc. Faraday Trans. 92 (1996) 469.

    Article  CAS  Google Scholar 

  32. X.D. Peng and M.A. Barteau, Surf. Sci. 233 (1990) 283; Catal. Lett. 7 (1990) 395.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Ruckenstein, E. The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4 . Catalysis Letters 43, 71–77 (1997). https://doi.org/10.1023/A:1018982304573

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018982304573

Keywords

Navigation