Skip to main content
Log in

Fractal steady states instochastic optimal control models

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The paper is divided into two parts. We first extend the Boldrin and Montrucchio theorem[5] on the inverse control problem to the Markovian stochastic setting. Given a dynamicalsystem x t+1 = g(x t , z t ), we find a discount factor β* such that for each 0 < β < β* a concaveproblem exists for which the dynamical system is an optimal solution. In the second part,we use the previous result for constructing stochastic optimal control systems having fractalattractors. In order to do this, we rely on some results by Hutchinson on fractals and self‐similarities.A neo‐classical three‐sector stochastic optimal growth exhibiting the Sierpinskicarpet as the unique attractor is provided as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.

    Google Scholar 

  2. M.F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proceedings Royal Society London Series A 399(1985)243-275.

    Google Scholar 

  3. R.N. Bhattacharya and R. Rao, Normal Approximation and Asymptotic Expansion, Wiley, New York, 1976.

    Google Scholar 

  4. J. Benhabib and K. Nishimura, Stochastic equilibrium oscillations, International Economic Review 30(1989)85-101.

    Google Scholar 

  5. M. Boldrin and L. Montrucchio, On the indeterminacy of capital accumulation paths, Journal of Economic Theory 40(1986)26-39.

    Google Scholar 

  6. W.A. Brock and M. Majumdar, Global asymptotic stability results for multisector models of optimal growth under uncertainty when future utilities are discounted, Journal of Economic Theory 18(1978)225-243.

    Google Scholar 

  7. W.A. Brock and L.J. Mirman, Optimal economic growth and uncertainty: The discounted case, Journal of Economic Theory 4(1972)479-513.

    Google Scholar 

  8. J. Dieudonné, Eléments d'Analyse, Vol. 1, Gauthier-Villars, Paris, 1969.

    Google Scholar 

  9. J.B. Donaldson and R. Mehra, Stochastic growth with correlated production shocks, Journal of Economic Theory 29(1983)282-312.

    Google Scholar 

  10. R.M. Dudley, Convergence of Baire measures, Studia Mathematica 28(1966)251-268.

    Google Scholar 

  11. K.J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  12. K.J. Falconer, Dimensions — their determination and properties, in: Fractal Geometry and Analysis, eds. J. Bélair and S. Dubuc, Kluwer Academic, Dordrecht, 1991, pp. 405-468.

    Google Scholar 

  13. C.A. Futia, Invariant distributions and the limiting behavior of Markovian economic models, Econometrica 50(1982)377-408.

    Google Scholar 

  14. M. Hata, Topological aspects of self-similar sets and singular functions, in: Fractal Geometry and Analysis, eds. J. Bélair and S. Dubuc, Kluwer Academic, Dordrecht, 1991, pp. 405-468.

    Google Scholar 

  15. H.A. Hopenhayn and E.C. Prescott, Stochastic monotonicity and stationary distributions for dynamic economies, Econometrica 60(1992)1387-1406.

    Google Scholar 

  16. J. Hutchinson, Fractals and self-similarity, Indiana University Mathematics Journal 30(1981)713-747.

    Google Scholar 

  17. A. Lasota and M.C. Mackey, Chaos, Fractals, and Noise, Springer, New York, 1994.

    Google Scholar 

  18. R.E. Lucas and E.C. Prescott, Investment under uncertainty, Econometrica 5(1971)659-681.

    Google Scholar 

  19. L.J. Mirman, On the existence of steady state measures for one sector growth models with uncertain technology, International Economic Review 13(1972)271-286.

    Google Scholar 

  20. L.J. Mirman, The steady state behavior of a class of one sector growth models with uncertain technology, Journal of Economic Theory 6(1973)219-242.

    Google Scholar 

  21. K. Mitra, On the indeterminacy of capital accumulation paths in a neoclassical stochastic growth model, Cornell University, CAE Working Paper Series 96-05, 1996.

  22. L. Montrucchio, Dynamic complexity of optimal paths and discount factors for strongly concave problems, Journal of Optimization Theory and Applications 80(1994)385-406.

    Google Scholar 

  23. K. Nishimura and G. Sorger, Optimal cycles and chaos: A survey, Studies in Nonlinear Dynamics and Econometrics 1(1996)11-28.

    Google Scholar 

  24. J.M. Ortega and W.C. Rheinboldt, Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

    Google Scholar 

  25. F. Privileggi, Metodi ricorsivi per l'ottimizzazione dinamica stocastica, Ph.D. Dissertation, University of Trieste, 1995.

  26. N.L. Stokey and R.E. Lucas, Recursive Methods in Economic Dynamics, Harvard University Press, Cambridge, MA, 1989.

    Google Scholar 

  27. E.R. Vrscay, Iterated function systems: Theory, applications and the inverse problem, in: Fractal Geometry and Analysis, eds. J. Bélair and S. Dubuc, Kluwer Academic, Dordrecht, 1991.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montrucchio, L., Privileggi, F. Fractal steady states instochastic optimal control models. Annals of Operations Research 88, 183–197 (1999). https://doi.org/10.1023/A:1018978213041

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018978213041

Keywords

Navigation