Skip to main content
Log in

Exploring multivariate Padé approximants for multiple hypergeometric series

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We investigate the approximation of some hypergeometric functions of two variables, namely the Appell functions F i , i = 1,...,4, by multivariate Padé approximants. Section 1 reviews the results that exist for the projection of the F i onto ϰ=0 or y=0, namely, the Gauss function 2 F 1(a, b; c; z), since a great deal is known about Padé approximants for this hypergeometric series. Section 2 summarizes the definitions of both homogeneous and general multivariate Padé approximants. In section 3 we prove that the table of homogeneous multivariate Padé approximants is normal under similar conditions to those that hold in the univariate case. In contrast, in section 4, theorems are given which indicate that, already for the special case F 1(a, b, b′; c; x; y) with a = b = b′ = 1 and c = 2, there is a high degree of degeneracy in the table of general multivariate Padé approximants. Section 5 presents some concluding remarks, highlighting the difference between the two types of multivariate Padé approximants in this context and discussing directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Allouche and A. Cuyt, On the structure of a table of multivariate rational interpolants, Constr. Approx. 8 (1992) 69-86.

    Article  MATH  MathSciNet  Google Scholar 

  2. G.A. Baker, Jr. and P. Graves-Morris, Padé Approximants, 2nd ed., Encyclopedia of Mathematics and Its Applications (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  3. C. Chaffy, (Padé)y or (Padé)x approximants of F(x, y), in: Nonlinear Numerical Methods and Rational Approximation, ed. A. Cuyt (1988) pp. 155-166.

  4. J.S. Chisholm, N-variable rational approximants, in: Padé and Rational Approximation, eds. E. Saff and R. Varga (1977) pp. 23-42.

  5. A. Cuyt, Regularity and normality of abstract Padé approximants. Projection property and product property, J. Approx. Theory 35 (1982) 1-11.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Cuyt, Padé Approximants for Operators: Theory and Applications, Lecture Notes in Mathematics, Vol. 1065 (Springer, Berlin, 1984).

    Google Scholar 

  7. A. Cuyt, Multivariate Padé approximants revisited, BIT 26 (1986) 71-79.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Cuyt, A recursive computation scheme for multivariate rational interpolants, SIAM J. Numer. Anal. 24 (1987) 228-238.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Cuyt and B. Verdonk, A review of branched continued fraction theory for the construction of multivariate rational approximants, Appl. Numer. Math. 4 (1988) 263-271.

    Article  MATH  MathSciNet  Google Scholar 

  10. M.G. De Bruin, Some classes of Padé tables whose upper halves are normal, Nieuw Arch. Wisk. (4) 25(3) (1977) 148-160.

    MATH  MathSciNet  Google Scholar 

  11. H. Exton, Multiple Hypergeometric Functions and Applications (Wiley, New York, 1976).

    Google Scholar 

  12. A.A. Gonchar, A local condition for the single-valuedness of analytic functions of several variables, Math. USSR-Sb. 22 (1974) 305-322.

    Article  MathSciNet  Google Scholar 

  13. P. Graves-Morris, R. Hughes Jones and G. Makinson, The calculation of some rational approximants in two variables, J. Inst. Math. Appl. 13 (1974) 311-320.

    MATH  MathSciNet  Google Scholar 

  14. P. Graves-Morris and D.E. Roberts, Calculation of Canterbury approximants, Comput. Phys. Comm. 10 (1975) 234-244.

    Article  Google Scholar 

  15. R. Hughes Jones, General rational approximants in N-variables, J. Approx. Theory 16 (1976) 201-233.

    Article  MathSciNet  Google Scholar 

  16. J. Karlsson and H. Wallin, Rational approximation by an interpolation procedure in several variables, in: Padé and Rational Approximation, eds. E. Saff and R. Varga (1977) pp. 83-100.

  17. Ch. Kuchminskaya, Corresponding and associated branching continued fractions for the double power series, Dokl. Akad. Nauk. Ukrainy 7 (1978) 613-617.

    Google Scholar 

  18. D. Levin, General order Padé-type rational approximants defined from double power series, J. Inst. Math. Appl. 18 (1976) 1-8.

    MATH  MathSciNet  Google Scholar 

  19. C. Lutterodt, Addendum to paper on “A two-dimensional analogue of Padé-approximants”, J. Phys. A 8(3) (1975) 427-428.

    Article  MATH  MathSciNet  Google Scholar 

  20. J.A. Murphy and M. O'Donohoe, A two-variable generalization of the Stieltjes-type continued fraction, J. Comput. Appl. Math. 4 (1978) 181-190.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Padé, Recherches sur la convergence des développements en fractions continues d'une certaine catégorie de fonctions, Ann. Sci. École Norm. Sup. (4) 24 (1907) 341-400.

    MATH  Google Scholar 

  22. E.D. Rainville, Special Functions (Macmillan, New York, 1960).

    Google Scholar 

  23. W. Siemaszko, Branched continued fractions for double power series, J. Comput. Appl. Math. 6(2) (1980) 121-125.

    Article  MATH  MathSciNet  Google Scholar 

  24. L.J. Slater, Generalized Hypergeometric Functions (Cambridge University Press, Cambridge, 1966).

    Google Scholar 

  25. H. Van Rossum, Systems of orthogonal and quasi orthogonal polynomials connected with the Padé table II, Nederl. Akad. Wetensch. Proc. 58 (1955) 526-534.

    MATH  Google Scholar 

  26. P. Wynn, A general system of orthogonal polynomials, Quart. J. Math. Oxford Ser. (2) 18 (1967) 81-96.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuyt, A., Driver, K., Tan, J. et al. Exploring multivariate Padé approximants for multiple hypergeometric series. Advances in Computational Mathematics 10, 29–49 (1999). https://doi.org/10.1023/A:1018918429917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018918429917

Navigation