Skip to main content
Log in

A Relativistic Schrödinger-like Equation for a Photon and Its Second Quantization

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Maxwell's equations are formulated as a relativistic “Schrödinger-like equation” for a single photon of a given helicity. The probability density of the photon satisfies an equation of continuity. The energy eigenvalue problem gives both positive and negative energies. The Feynman concept of antiparticles is applied here to show that the negative-energy states going backward in time (t → −t) give antiphoton states, which are photon states with the opposite helicity. For a given mode, properties of a photon, such as energy, linear momentum, total angular momentum, orbital angular momentum, and spin are equivalent in both classical electromagnetic field theory and quantum theory. The single-photon Schrödinger equation is field (or “second”) quantized in a gauge-invariant way to obtain the quantum field theory of many photons. This approach treats the quantization of electromagnetic radiation in a way that parallels the quantization of material particles and, thus, provides a unified treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997), pp. 24–45.

    Google Scholar 

  2. C. Lanczos, Z. Phys. 57, 447–473 (1929).

    Google Scholar 

  3. G. Rumer, Z. Phys. 65, 244–252 (1930).

    Google Scholar 

  4. O. Laporte and G. E. Uhlenbeck, Phys. Rev. 37, 1380–1397 (1931).

    Google Scholar 

  5. G. Molière, Ann. Phys. (Leipzig ) 37, 415–420 (1940).

    Google Scholar 

  6. G. Molière, Ann. Phys. (Leipzig ) 6, 146–162 (1949).

    Google Scholar 

  7. J. R. Oppenheimer, Phys. Rev. 38, 725–746 (1931).

    Google Scholar 

  8. W. J. Archibald, Can. J. Phys. 33, 565–572 (1955).

    Google Scholar 

  9. R. H. Good, Jr., Phys. Rev. 105, 1914–1919 (1957).

    Google Scholar 

  10. C. L. Hammer and R. H. Good, Jr., Phys. Rev. 108, 882–886 (1957).

    Google Scholar 

  11. T. J. Nelson and R. H. Good, Jr., Phys. Rev. 179, 1445–1449 (1969).

    Google Scholar 

  12. R. H. Good, Jr., and T. J. Nelson, Classical Theory of Electric and Magnetic Fields (Academic, New York, 1971), pp. 578–627.

    Google Scholar 

  13. J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, MA, 1967), pp. 23–32, 169 (note).

    Google Scholar 

  14. J. E. Sipe, Phys. Rev. A 52, 1875–1883 (1995).

    Google Scholar 

  15. I. Bialynicki-Birula, Acta Phys. Polonica A 86, 97–116 (1994).

    Google Scholar 

  16. B. Kursunoglu, Modern Quantum Theory (Freeman, San Francisco, 1962), Chap. II.

    Google Scholar 

  17. I. Bialynicki-Birula, in Progress in Optics, Vol. XXXVI, E. Wolf, ed. (North-Holland Amsterdam, 1996), pp. 245–294.

    Google Scholar 

  18. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics ( Interscience, New York, 1965), pp. 1–72.

    Google Scholar 

  19. R. A. Young, Am. J. Phys. 44, 1043–1046 (1976).

    Google Scholar 

  20. E. C. G. Sudarshan and T. Rothman, Am. J. Phys. 59, 592–595 (1991).

    Google Scholar 

  21. E. Merzbacher and D. Park, Am. J. Phys. 60, 946 (1992).

    Google Scholar 

  22. A. H. Godlevskaya and V. N. Kapshai, Opt. Spektrosk. 66, 830–834 (1989). [English translation: Opt. Spectrosc. (USSR) 66, 486-488 (1989).]

    Google Scholar 

  23. I. K. Karpenko, Izvest. Vysshikh Uchebnykh Zavedenii Fiz. 32, 46–50 (1989). [English translation: Soviet Phys. J. 32, 708-712 (1989).]

    Google Scholar 

  24. W. I. Fushchich and A. G. Nikitin, Symmetries of Maxwell's Equations (Reidel, Dordrecht, 1987), pp. 8–20.

    Google Scholar 

  25. R. J. Cook, Phys. Rev. A 25, 2164–2167 (1982).

    Google Scholar 

  26. R. J. Cook, Phys. Rev. A 26, 2754–2760 (1982).

    Google Scholar 

  27. R. Mignani, E. Recami, and M. Baldo, Lett. Nuovo Cimento 11, 568–572 (1974).

    Google Scholar 

  28. R. P. Feynman, Quantum Electrodynamics (Benjamin, New York, 1962), pp. 66–70.

    Google Scholar 

  29. R. P. Feynman, Phys. Rev. 76, 749–759 (1949).

    Google Scholar 

  30. K. Gottfried, Quantum Mechanics, Vol. 1: Fundamentals (Benjamin, New York, 1966), pp. 400–418. (Circular polarization vectors are given on p. 413.)

    Google Scholar 

  31. H. Weber, Die partiellen Differential-Gleichungen der mathematischen Physik nach Riemann's Vorlesungen ( Vieweg, Braunschweig, 1901), p. 348.

    Google Scholar 

  32. H. Kramers, Quantum Mechanics (North-Holland, Amsterdam, 1958), pp. 418–422. [Reprinted: (Dover, New York, 1964.) ] [Kramers does not use λ in his definition of ? in Eq. (2.5).]

    Google Scholar 

  33. L. Silberstein, Phil. Mag. 23, 790–809 (1912).

    Google Scholar 

  34. H. Bateman, The Mathematical Analysis of Electrical and Optical Wavemotion on the Basis of Maxwell's Equations (Cambridge University Press, Cambridge, 1915), pp. 4, 5. [Reprinted: (Dover, New York, 1955).]

    Google Scholar 

  35. J. D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), pp. 236–237, 245-251.

    Google Scholar 

  36. D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, NJ, 1951), pp. 89–98, 108-110. [Reprinted: (Dover, New York, 1989).]

    Google Scholar 

  37. T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400–406 (1949).

    Google Scholar 

  38. A. S. Wightman, Rev. Mod. Phys. 34, 845–872 (1962).

    Google Scholar 

  39. J. M. Jauch and C. Piron, Helv. Phys. Acta 40, 559–570 (1967).

    Google Scholar 

  40. W. O. Amrein, Helv. Phys. Acta 42, 149–190 (1968).

    Google Scholar 

  41. I. Bialynicki-Birula, Phys. Rev. Lett. 80, 5247–5250 (1998).

    Google Scholar 

  42. L. D. Landau and R. Peierls, Z. Phys. 62, 188–200 (1930).

    Google Scholar 

  43. L. Mandel, Phys. Rev. 144, 1071–1077 (1966).

    Google Scholar 

  44. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995), pp. 629–639.

    Google Scholar 

  45. G. Baym, Lectures on Quantum Mechanics (Benjamin, New York, 1969), Chap. 1.

    Google Scholar 

  46. W. Pauli and V. Weisskopf, Helv. Phys. Acta 7, 709–731 (1934).

    Google Scholar 

  47. S. J. van Enk and G. Nienhuis, Europhys. Lett. 25, 497–501 (1994).

    Google Scholar 

  48. D. H. Kobe, Phys. Lett. A 253, 7–11 (1999).

    Google Scholar 

  49. D. H. Kobe, Am. J. Phys. 49, 581–588 (1981).

    Google Scholar 

  50. W. Heitler, The Quantum Theory of Radiation, 3rd edn. (Oxford University Press, London, 1954), Chap. II.

    Google Scholar 

  51. D. H. Kobe and R. D. Gray, J. Phys. A Math. Gen. 15, 3145–3155 (1982).

    Google Scholar 

  52. R. Loudon, The Quantum Theory of Light (Oxford University Press, London, 1973), Chap. 6.

    Google Scholar 

  53. J. Schwinger, Phys. Rev. 127, 324–330 (1962).

    Google Scholar 

  54. S. Weinberg, The Quantum Theory of Fields, Vol. 1. Foundations (Cambridge University Press, Cambridge, 1995), p. 375.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobe, D.H. A Relativistic Schrödinger-like Equation for a Photon and Its Second Quantization. Foundations of Physics 29, 1203–1231 (1999). https://doi.org/10.1023/A:1018855630724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018855630724

Keywords

Navigation