Skip to main content
Log in

Modelling concurrent deformation mechanisms in auxetic microporous polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A 2D model for the deformation of auxetic microporous polymers (those with a negative Poisson’s ratio) has been previously developed, consisting of a network of rigid rectangular nodules interconnected by fibrils. This model has now been extended to describe the deformation of the network via concurrent fibril hinging and stretching mechanisms. Expressions for the strain-dependent Poisson’s ratios and Young’s moduli are derived and fully investigated with respect to their dependence on the model parameters. These expressions are compared with the experimental strain-dependent data for auxetic microporous polytetrafluoroethylene (PTFE) and ultra-high molecular weight polyethylene (UHMWPE). The use of concurrent deformation mechanisms makes a very significant improvement in the agreement of theory with experiment for both cases. Slight discrepancies are discussed in terms of the use of the assumptions of a 2D network of regular, rectangular nodules and a constant force coefficient ratio governing the two deformation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. E. EVANS, M. A. NKANSAH, I. J. HUTCHINSON and S. C. ROGERS, Nature 353 (1991) 124.

    Article  CAS  Google Scholar 

  2. B. D. CADDOCK and K. E. EVANS, J. Phys. D: Appl. Phys. 22 (1989) 1877.

    Article  CAS  Google Scholar 

  3. K. E. EVANS and B. D. CADDOCK, ibid. 22 (1989) 1883.

    Article  CAS  Google Scholar 

  4. K. L. ALDERSON and K. E. EVANS, Polymer 33 (1992) 4435.

    Article  CAS  Google Scholar 

  5. R. LAKES, Science 235 (1987) 1038.

    Article  CAS  Google Scholar 

  6. K. E. EVANS, M. A. NKANSAH and I. J. HUTCHINSON, Acta Metall. et Mater. 42 (1994) 1289.

    Article  Google Scholar 

  7. A. YEGANEH-HAERI, D. J. WEIDNER and J. B. PARISE, Science 257 (1992) 650.

    Article  CAS  Google Scholar 

  8. N. R. KESKAR and J. R. CHELIKOWSKY, Nature 358 (1992) 222.

    Article  CAS  Google Scholar 

  9. K. E. EVANS, Endeavour 15 (1991) 170.

    Article  CAS  Google Scholar 

  10. K. L. ALDERSON, A. P. PICKLES, P. J. NEALE and K. E. EVANS, Acta Metall. et Mater. 42 (1994) 2261.

    Article  CAS  Google Scholar 

  11. K. L. ALDERSON and K. E. EVANS, J. Mater. Sci. 28 (1993) 4092.

    Article  CAS  Google Scholar 

  12. P. J. NEALE, K. L. ALDERSON, A. P. PICKLES and K. E. EVANS, J. Mater. Sci. Lett. 12 (1993) 1529.

    CAS  Google Scholar 

  13. A. P. PICKLES, K. L. ALDERSON and K. E. EVANS, Polym. Eng. & Sci. 36 (1996) 636.

    Article  CAS  Google Scholar 

  14. K. E. EVANS, J. Phys. D: Appl. Phys. 22 (1989) 1870.

    Article  CAS  Google Scholar 

  15. A. ALDERSON and K. E. EVANS J. Mater. Sci. 30 (1995) 3319.

    Article  CAS  Google Scholar 

  16. K. L. ALDERSON, A. ALDERSON and K. E. EVANS, J. Strain Analysis for Engineering Design, submitted.

  17. M. F. BEATTY and D. O. STALNAKER, J. Appl. Mech. 53 (1986) 807.

    Article  Google Scholar 

  18. J. E. SHIGLEY, “Applied Mechanics of Materials” (McGraw-Hill, New York, 1976).

    Google Scholar 

  19. B. M. LEMPRIERE, Amer. Inst. Aeronaut. Astronaut. J. 6 (1968) 2226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alderson, A., Evans, K.E. Modelling concurrent deformation mechanisms in auxetic microporous polymers. Journal of Materials Science 32, 2797–2809 (1997). https://doi.org/10.1023/A:1018660130501

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018660130501

Keywords

Navigation