Skip to main content
Log in

A Modified Boltzmann Equation for Bose–Einstein Particles: Isotropic Solutions and Long-Time Behavior

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Under some strong cutoff conditions on collision kernels, global existence, local stability, entropy identity, conservation of energy, and moment production estimates are proven for isotropic solutions of a modified (quantum effect) Boltzmann equation for spatially homogeneous gases of Bose–Einstein particles (BBE). Then applying these results with the biting-weak convergence, some results on the long-time behavior of the conservative isotropic solutions of the BBE equation are obtained, including the velocity concentration at very low temperatures and the tendency toward equilibrium states at very high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Arkeryd, On the Boltzmann equation, Arch. Rat. Mech. Anal. 45:1–34 (1972).

    Google Scholar 

  2. J. M. Ball and F. Murat, Remarks on Chacon's biting lemma, Proceedings of the American Math. Soc. 107(3):655–663 (1989).

    Google Scholar 

  3. J. K. Brooks and R. V. Chacon, Continuity and compactness of measures, Adv. Math. 37:16–26 (1980).

    Google Scholar 

  4. T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz(Almqvist 6 Wiksell, Uppsala, 1957).

  5. E. A. Carlen and M. C. Carvalho, Entropy production estimates for Boltzmann equations with physically realistic collision kernels, J. Stat. Phys. 74:743–782 (1994).

    Google Scholar 

  6. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases(Springer, New York, 1994).

    Google Scholar 

  7. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Third Edition (Cambridge University Press, 1970).

  8. J. Dolbeault, Kinetic models and quantum effects: A modified Boltzmann equation for Fermi-Dirac particles, Arch. Rat. Mech. Anal. 127:101–131 (1994).

    Google Scholar 

  9. N. Dunford and J. T. Schwartz, Linear Operators I: General Theory(Interscience, New York, 1958).

  10. T. Gustafsson, Global L p-properties for the spatially homogeneous Boltzmann equation, Arch. Rational Mech. Anal. 103:1–38 (1988).

    Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Statistical Physics, Third Edition, Part 1 (Pergamon Press, 1980).

  12. P. L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications III, J. Math. Kyoto Univ. 34(3):539–584 (1994).

    Google Scholar 

  13. X. G. Lu, Spatial decay solutions of the Boltzmann equation: converse properties of long time limiting behavior, SIAM J. Math. Anal. 30:1151–1174 (1999).

    Google Scholar 

  14. X. G. Lu, Conservation of energy, entropy identity and local stability for the spatially homogeneous Boltzmann equation, J. Stat. Phys. 96:765–796 (1999).

    Google Scholar 

  15. A. Mukherjea and K. Pothoven, Real and Functional Analysis, Part A: Real Analysis, Second Edition (Plenum Press, New York–London, 1984).

    Google Scholar 

  16. R. K. Pathria, Statistical Mechanics(Pergamon Press, 1972).

  17. C. Truesdell and R. G. Muncaster, Fundamentals Maxwell's Kinetic Theory of a Simple Monoatomic Gas(Academic Press, New York, 1980).

    Google Scholar 

  18. B. Wennberg, Entropy dissipation and moment production for the Boltzmann equation, J. Stat. Phys. 86:1053–1066 (1997).

    Google Scholar 

  19. K. Zhang, Biting theorems for Jacobians and their applications, Ann. I.H.P. Anal. Non Lin. 7(4):345–365 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X. A Modified Boltzmann Equation for Bose–Einstein Particles: Isotropic Solutions and Long-Time Behavior. Journal of Statistical Physics 98, 1335–1394 (2000). https://doi.org/10.1023/A:1018628031233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018628031233

Navigation