Skip to main content
Log in

Loss and non-linearity saturation effects on the bistability of non-linear distributed feedback structures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We investigate theoretically the effects of optical absorption and saturation of the non-linear index of refraction on the bistability of non-linear distributed feedback structures (NLDFBs). By assuming that the Kerr non-linearity saturates in an exponential fashion, we obtain for the first time closed-form expressions for the so-called self-phase and cross-phase modulation terms. Our investigation shows that both absorption and, in particular, saturation significantly affect the bistable properties of this structure and in many cases eliminate this response completely. In some cases, however, saturation alters the NLDFB's transfer characteristics in a potentially useful manner. We find that weak levels of saturation may increase the contrast ratio between the intensities of the high and low bistable states. At increasing levels of saturation, where bistability is no longer observed, we find regimes where the NLDFB structure could possibly be used for optical amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. McCall, H. M. Gibbs, G. G. Churchill and T. N. C. Venkatesan, Am.Phys. Soc. 20 (1975) 636. S. L. McCall, H. M. Gibbs and T. N. C. Venkatesan, J. Opt. Soc. Am. 65 (1975) 1184.

    Google Scholar 

  2. H. M. Gibbs, S. L. McCall and T. N. C. Venkatesan, Phys. Rev. Lett. 36 (1976) 1135.

    Article  ADS  Google Scholar 

  3. P. W. Smith, E. H. Turner and P. J. Maloney, IEEE J. Quantum Electron. 14 (1978) 207.

    Article  ADS  Google Scholar 

  4. S. L. McCall and H. M. Gibbs, J. Opt. Soc. Am. 68 (1978) 1378.

    ADS  Google Scholar 

  5. J. L. Jewell, M. C. Rushford and H. M. Gibbs, Appl. Phys. Lett. 44 (1984) 172.

    Article  ADS  Google Scholar 

  6. R. C. Jameson and D. Sarid, IEEE J. Quantum Electron. 21 (1985) 1348.

    Article  ADS  Google Scholar 

  7. C. J. Herbert and M. S. Malcuit, Opt. Lett. 18 (1993) 1783.

    ADS  Google Scholar 

  8. H. G. Winful, J. H. Marburger and E. Garmire, Appl. Phys. Lett. 35 (1979) 379.

    Article  ADS  Google Scholar 

  9. S. Radic, N. George and G. P. Agrawal, Opt. Lett. 19 (1994) 1789.

    Article  ADS  Google Scholar 

  10. N. D. Sankey, D. F. Prelewitz and T. G. Brown, Appl. Phys. Lett. 60 (1992) 1427.

    Article  ADS  Google Scholar 

  11. J. He and M. Cada, IEEE J. Quantum Electron. 27 (1991) 1182.

    Article  ADS  Google Scholar 

  12. H. G. Winful and G. D. Cooperman, Appl. Phys. Lett. 40 (1982) 298.

    Article  ADS  Google Scholar 

  13. H. G. Winful, R. Zamir and S. Feldman, Appl. Phys. Lett. 58 (1991) 1001.

    Article  ADS  Google Scholar 

  14. C. M. De Sterke and J. E. Sipe, Phys. Rev. A 42 (1990) 2858.

    Article  ADS  Google Scholar 

  15. N. D. Sankey, D. F. Prelewitz and T. G. Brown, J. Appl. Phys. 73 (1993) 7111.

    Article  ADS  Google Scholar 

  16. D. N. Christodoulides and R. I. Joseph, Phys. Rev. Lett. 62 (1989) 1746.

    Article  ADS  Google Scholar 

  17. W. Chen and D. L. Mills, Phys. Rev. Lett. 58 (1987) 160.

    Article  ADS  Google Scholar 

  18. C. M. De Sterke and J. E. SIPE, Phys. Rev. A 43 (1991) 2467.

    Article  ADS  Google Scholar 

  19. D. L. Mills and S. E. Trullinger, Phys. Rev. B 36 (1987) 947.

    Article  ADS  Google Scholar 

  20. C. M. De Sterke and J. E. Sipe, Phys. Rev. A 42 (1990) 550.

    Article  ADS  Google Scholar 

  21. A. B. Aceves and S. Wabnitz, Phys. Lett. A 141 (1989) 37.

    Article  ADS  Google Scholar 

  22. J. Feng, Opt. Lett. 18 (1993) 1302.

    ADS  Google Scholar 

  23. P. Li Kam Wa and P. N. Robson, IEEE J. Quantum Electron. 23 (1987) 1962.

    Article  ADS  Google Scholar 

  24. Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffery, N. Peyghambarian, L. Banyai, A. C. Gossard and W. Wiegmann, Phys. Rev. Lett. 57 (1986) 2446.

    Article  ADS  Google Scholar 

  25. R. K. Jain and R. C. Lind, J. Opt. Soc. Am. 73 (1983) 647.

    ADS  Google Scholar 

  26. G. I. Stegeman, C. T. Seaton, C. N. Ironside, T. Cullen and A. C. Walker, Appl. Phys. Lett. 50 (1987) 1035.

    Article  ADS  Google Scholar 

  27. E. Garmire, IEEE J. Quantum Electron 25 (1989) 289.

    Article  ADS  Google Scholar 

  28. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).

    Google Scholar 

  29. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni and C. T. Seaton, IEEE J. Lightwave Technol. 6 (1988) 953.

    Article  ADS  Google Scholar 

  30. A. Mecozzi, S. Trillo and S. Wabnitz, Opt. Lett. 12 (1987) 1008.

    ADS  Google Scholar 

  31. F. S. Felber and J. H. Marburger, Appl. Phys. Lett. 28 (1976) 731.

    Article  ADS  Google Scholar 

  32. G. Assanto and G. I. Stegeman, Appl. Phys. Lett. 56 (1990) 2285.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catchmark, J.M., Christodoulides, D.N. Loss and non-linearity saturation effects on the bistability of non-linear distributed feedback structures. Optical and Quantum Electronics 29, 393–403 (1997). https://doi.org/10.1023/A:1018535028992

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018535028992

Keywords

Navigation