Skip to main content
Log in

The general protected invasion theory: Sex biases in parental and alloparental care

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The biases towards eusociality, female workers and maternal care in haplodiploid versus diploid insects may result from the relatively low probabilities that rare mutant, partially dominant alleles promoting these behaviours will be lost by genetic drift in haplodiploid populations (Reeve, 1993). A generalization of this 'protected invasion' theory also predicts that parental and alloparental care will tend to be associated with the homogametic sex in diploid populations if the Y chromosome of the heterogametic sex is absent or largely inert. Sex differences in (allo)parental care (i.e. either parental or alloparental care) should increase with increased asymmetry between the sexes in the fraction of behaviour-influencing loci occurring on their characteristic sex chromosomes. The theory explains the strong predisposition towards female (allo)parental care in mammals, a contrasting tendency towards male (allo)parental care in birds, the propensity for joint male and female (allo)parental care in termites, and biases towards female cooperation in social spiders. The theory also explains the apparent rarity or absence of alloparental care in marsupials, an intriguing consequence of preferential paternal X-chromosome inactivation in this taxon. Thus protected invasion theory possibly provides new insights into the relationship between social structure and the genetic system. The theory does not compete with ecological or kin-selective hypotheses for the advantages of (allo)parental care; indeed, such advantages must exist for protected-invasion biases to operate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avilés, L. (1993) Newly-discovered sociality in the neotropical spider Aebutina binotata, Simon (Dictynidae?). J. Arachnol. 21, 184–193.

    Google Scholar 

  • Avilés, L. (1994) Social behaviour in a web-building lynx spider, Tapinillus sp. Biol. J. Linn. Soc. 52, 163–176.

    Google Scholar 

  • Avilés, L. (1997) Causes and consequences of cooperation and permanent-sociality in spiders. In The Evolution of Social Behavior in Insects and Arachnids (J.C. Choe and B.J. Crespi, eds). Cambridge University Press, Cambridge.

    Google Scholar 

  • Bedo, D.G. (1987) Undifferentiated sex chromosomes in Mastotermes darwiniensis Froggatt (Isoptera; Mastotermitidae) and the evolution of eusociality in termites. Genome 29, 76–79.

    Google Scholar 

  • Buskirk, R.E. (1981) Sociality in the Arachnida. In Social Insects, Vol. 4 (H.R. Hermann, ed.), pp. 281–367. Academic Press, New York.

    Google Scholar 

  • Charlesworth, B., Coyne, J.A. and Barton, N.H. (1987) The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130, 113–146.

    Google Scholar 

  • Clutton-Brock, T.H. (1991) The Evolution of Parental Care. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Cooper, H., Johnston, P.G., Vandeberg, J.L. and Robinson, E.S. (1990) X-Chromosome inactivation in marsupials. Aust. J. Zool. 37, 411–418.

    Google Scholar 

  • Coyne, J.A. (1993) The genetics of an isolating mechanism between two sibling species of Drosophila. Evolution 47, 778–788.

    Google Scholar 

  • Crozier, R.H. (1977) Evolutionary genetics of the Hymenoptera. Ann. Rev. Entomol. 22, 263–288.

    Google Scholar 

  • Datta, S.N. and Chatterjee, K. (1988) Chromosomes and sex determination in 13 araneid spiders of northeastern India. Genetica (The Hague) 76, 91–100.

    Google Scholar 

  • Fisher, R.A. (1930) The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

    Google Scholar 

  • Fontana, F. (1991) Multiple reciprocal chromosomal translocations and their role in the evolution of sociality in termites. Ethol. Ecol. Evol. 1, 15–19.

    Google Scholar 

  • Greenwood, P.J. (1980) Mating systems, philopatry, and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162.

    Google Scholar 

  • Gould, L. (1992) Alloparental care in free-ranging Lemur catta at Berenty Reserve, Madagascar. Folia Primatol. 58, 72–83.

    Google Scholar 

  • Hamilton, W.D. (1972) Altruism and related phenomena, mainly in social insects. Ann. Rev. Ecol. Syst. 3, 193–232.

    Google Scholar 

  • Hoikkala, A. and Lumme, J. (1987) The genetic basis of evolution of the male courtship songs in the Drosophila virilis group. Evolution 41, 827–845.

    Google Scholar 

  • Hunt, P.A. and Eicher, E.M. (1991) Fertile male mice with three chromosomes: Evidence that infertility in XYY male mice is an effect of two Y chromosomes. Chromosoma 100, 293–299.

    Google Scholar 

  • Huttenlocher, P.R., Taravath, S. and Mojtahedi, S. (1994) Periventricular heteropia and epilepsy. Neurology 44, 51–55.

    Google Scholar 

  • Jantz, R.L. and Hunt, D.R. (1986) The influence of sex chromosomes on finger dermatoglyphic patterns. Ann. Human Biol. 13, 287–296.

    Google Scholar 

  • Kleiman, D.G. and Malcolm, J.R. (1981) The evolution of male parental investment in mammals. In Parental Care in Mammals (D.J. Gubernick and P.H. Klopfer, eds), pp. 347–387. Plenum Press, New York.

    Google Scholar 

  • Lacy, R.C. (1980) The evolution of eusociality in termites: A haplodiploid analogy. Am. Nat. 116, 449–451.

    Google Scholar 

  • Leinaas, H.P. (1983) A haplodiploid analogy in the evolution of termite eusociality? Am. Nat. 121, 302–304.

    Google Scholar 

  • Luykx, P. (1990) A cytogenetic survey of 25 species of lower termites from Australia. Genome 33, 80–88.

    Google Scholar 

  • Luykx, P. and Syren, R.M. (1979) The cytogenetics of Incisitermes schwarzi and other Florida termites. Sociobiology 4, 191–209.

    Google Scholar 

  • Luykx, P., Michel, J. and Luykx, J. (1986) The spatial distribution of the sexes in colonies of the termite Incisitermes schwarzi Banks (Isoptera: Kalotermitidae). Ins. Soc. 33, 406–421.

    Google Scholar 

  • Luykx, P., Nickel, D.A. and Crother, B.I. (1990) A morphological, allozymic, and karyotypic assessment of the phylogeny of some lower termites (Isoptera: Kalotermitidae). Proc. Entomol. Soc. Wash. 92, 385–399.

    Google Scholar 

  • Mazina, O.M. and Korochkina, S.E. (1991) Studies on the nature of female-sterile mutations at the ecs locus responsible for sensitivity to ecdysterone in Drosophila melanogaster. Genetika 27, 1920–1927.

    Google Scholar 

  • Ostermeyer, M.C. and Elwood, R.W. (1984) Helpers (?) at the nest in the Mongolian gerbil, Meriones unguiculatus. Behaviour 91, 61–77.

    Google Scholar 

  • Poole, T. (1985) Social Behavior in Mammals. Blackie, London.

    Google Scholar 

  • Price, E.C. (1991) Competition to carry infants in captive families of cotton-top tamarins Sanguinus oedipus. Behaviour 118, 66–88.

    Google Scholar 

  • Ratcliffe, S.G., Pan, H. and McKie, M. (1992) Growth during puberty in the XYY boy. Ann. Human Biol. 19, 579–587.

    Google Scholar 

  • Reeve, H.K. (1993) Haplodiploidy, eusociality and absence of male parental and alloparental care in Hymenoptera: A unifying genetic hypothesis distinct from kin selection theory. Phil. Trans. R. Soc. Lond. B 342, 335–352.

    Google Scholar 

  • Ridley, M. (1978) Paternal care. Anim. Behav. 26, 904–932.

    Google Scholar 

  • Riechert, S.E. and Roeloffs, R.M. (1993) Evidence for and consequences of inbreeding in the cooperative spiders. In The Natural History of Inbreeding and Outbreeding (N.W. Thornhill, ed.), pp. 283–303. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Rowell, D.M. (1985) Complex sex-linked fusion hetrozygosity in the Australian huntsman spider Delena cancerides (Araneae: Sparassidae). Chromosoma 93, 169–176.

    Google Scholar 

  • Rowell, D.M. and Avilés, L. (1995) Sociality in a bark-dwelling huntsman spider from Australia, Delena cancerides (Araneae: Sparassidae). Insectes Sociaux 42, 287–302.

    Google Scholar 

  • Rowell, D.M. and Main, B.Y. (1992) Sex ratio in a social spider Diaea socialis (Araneae: Thomisidae). J. Arachnol. 20, 200–206.

    Google Scholar 

  • Rubenstein, D.I. and Wrangham, R.W. (eds) (1986) Ecological Aspects of Social Evolution. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Santos, O. and Luykx, P. (1985) Holozygosity for sex-linked genes in males of the termite Incisitermes schwarzi. Biochem. Gen. 23, 729–740.

    Google Scholar 

  • Shellman-Reeve, J. (1997) The spectrum of eusociality in termites. In The Evolution of Social Behaviour in Insects and Arachnids (J.C. Choe and B.J. Crespi, eds). Cambridge University Press, Cambridge.

    Google Scholar 

  • Sherman, P.W., Jarvis, J.U.M. and Alexander, R.D. (eds) (1991) The Biology of the Naked Mole-rat. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Sperling, F.A.H. (1994) Sex-linked genes and species differences in the Lepidoptera. Can. Entomol. 126, 807–818.

    Google Scholar 

  • Stacey, P.B. and Koenig, W.D. (eds) (1990) Cooperative Breeding in Birds. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Syren, R.M. and Luykx, P. (1977) Permanent segmental interchange complex in the termite Incisitermes schwarzi. Nature 266, 167–168.

    Google Scholar 

  • Terborgh, J. and Goldizen, A.W. (1985) On the mating system of the cooperatively breeding saddle-backed tamarin Saguinus fuscicollis. Behav. Ecol. Sociobiol. 16, 293–300.

    Google Scholar 

  • Townsend, G. and Alvesalo, L. (1985) Tooth size in 47 XYY males: Evidence for a direct effect of the Y chromosome on growth. J. Aust. Dent. 30, 268–272.

    Google Scholar 

  • Trivers, R. (1985) Social Evolution. Benjamin-Cummings, Menlo Park, CA.

    Google Scholar 

  • Vincke, P.P. and Tilquin, J.P. (1978) A sex-linked ring quadrivalent in Termitidae (Isoptera). Chromosoma 67, 151–156.

    Google Scholar 

  • Vollrath, F. (1986) Eusociality and extraordinary sex ratios in the spider Anelosimus eximius (Araneae: Theridiidae). Behav. Ecol. Sociobiol. 18, 283–287.

    Google Scholar 

  • Wang, Z. and Novak, M.A. (1994) Alloparental care and the influence of father presence on juvenile prairie voles, Microtus ochrogaster. Anim. Behav. 47, 281–288.

    Google Scholar 

  • White, M.J.D. (1973) Animal Cytology and Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wright, S. (1931) Evolution in Mendelian populations. Genetics 16, 97–159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeve, H.K., Shellman-Reeve, J.S. The general protected invasion theory: Sex biases in parental and alloparental care. Evolutionary Ecology 11, 357–370 (1997). https://doi.org/10.1023/A:1018472521277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018472521277

Navigation