Skip to main content
Log in

Spine development in Brachionus quadridentatus from an Australian billabong: genetic variation and induction by Asplanchna

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Fertilized resting eggs of Australian Brachionus quadridentatus hatched 2–3 days after hydration into females with or, more frequently, without posterior lateral spines. These females then produced clones with short-spined or long-spined phenotypes. Asplanchna girodi induced females from two short-spined clones and one long-spined clone to produce daughters with significantly longer posterior lateral spines. In all clones, there were significant differences in spine development among offspring of mothers within Asplanchna and control treatments. The range of phenotypes reported in one short-spined clone is observed in the billabong and includes much of the variation described for the species, with mehleni (long-spined) phenotypes occurring with Asplanchna. In B. quadridentatus, the ecological significance of long-spined, basic phenotypes, and of the spine-development response to Asplanchna, is unclear. In laboratory cultures, females of all clones were attached to the substratum or water surface, and were safe from Asplanchna; in nature, females are epiphytic and probably rarely susceptible to Asplanchna. Most (96%) resting eggs produced in cultures and kept under culture conditions hatched after a 7-day latent period. This raises questions regarding natural conditions which might prevent hatching and allow accumulation of resting eggs in a sediment egg bank. Hatching of resting eggs in nature may be enhanced in sediments which dry and then become flooded after rains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanchot, J. & R. Pourriot, 1982. Effets de l'intensité d'eclairement et de la longueur d'onde sur l'éclosion des œufs de durée de Brachionus rubens (Rotifère). C.R. Acad. Sci. 295: 123–125.

    Google Scholar 

  • Clément, P. & R. Pourriot, 1979. Influence de l'âge des grandparents sur l'apparition des mâles chez le Rotifère Notommata copeus Ehr. Internat. J. Invert. Reproduction 1: 89–98.

    Google Scholar 

  • De Beauchamp, P., 1952. Un facteur de la variabilité chez les rotifères du genre Brachionus. C. R. Acad. Sci. 234: 573–575.

    Google Scholar 

  • Gilbert, J. J., 1966. Rotifer ecology and embryological induction. Science 151: 1234–1237.

    Google Scholar 

  • Gilbert, J. J., 1967. Asplanchna and posterolateral spine induction in Brachionus calyciflorus. Arch. Hydrobiol. 64: 1–62.

    Google Scholar 

  • Gilbert, J. J., 1968. Dietary control of sexuality in the rotifer Asplanchna brightwelli Gosse. Physiol. Zool. 41: 14–43.

    Google Scholar 

  • Gilbert, J. J., 1974. Dormancy in rotifers. Trans. am. Microsc. Soc. 93: 490–513.

    Google Scholar 

  • Gilbert, J. J., 1993. Rotifera. In K. G. & R. G. Adiyodi (eds), Reproductive Biology of Invertebrates. Vol. VI, Part A. Asexual Propagation and Reproductive Strategies. Oxford & IBH Publishing Co., New Delhi: 231–263.

    Google Scholar 

  • Gilbert, J. J., 1999. Kairomone-induced morphological defenses in rotifers. In Tollrian, R. & C. D. Harvell (eds), The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, N.J.: 127–141.

    Google Scholar 

  • Gilbert, J. J. & H. J. MacIsaac, 1989. The susceptibility of Keratella cochlearis to interference from small cladocerans. Freshwat. Biol. 22: 333–339.

    Google Scholar 

  • Gilbert, J. J. & R. S. Stemberger, 1984. Asplanchna-induced polymorphism in the rotifer Keratella slacki. Limnol. Oceanogr. 29: 1309–1316.

    Google Scholar 

  • Gilbert, J. J. & J. K. Waage, 1967. Asplanchna, Asplanchna substance and posterolateral spine length variation of the rotifer Brachionus calyciflorus in a natural environment. Ecology 48: 1027–1031.

    Google Scholar 

  • Green, J. & O. B. Lan, 1974. Asplanchna and the spines of Brachionus calyciflorus in two Javanese sewage ponds. Freshwat. Biol. 4: 223–226.

    Google Scholar 

  • Green, J. D. & R. J. Shiel, 2000. Predation by the centropagid calanoid, Boeckella major, structuring microinvertebrate communities in the absence of fish. Verh. Int. Ver. Limnol, 27, in press.

  • Halbach, U., 1970. Die Ursachen der Temporalvariation von Brachionus calyciflorus Pallas (Rotatoria). Oecologia 4: 262–318.

    Google Scholar 

  • Hampton, S. E. & J. J. Gilbert, 2001. Observations of insect predation on rotifers. Hydrobiologia, in press.

  • Hillman, T. J. & R. J. Shiel, 1991. Macro-and microinvertebrates in Australian billabongs. Verh. int. Ver. Limnol. 24: 1581–1587.

    Google Scholar 

  • Iyer, N. & T. R. Rao, 1996. Responses of the predatory rotifer Asplanchna intermedia to prey species differing in vulnerability: laboratory and field studies. Freshwat. Biol. 36: 521–533.

    Google Scholar 

  • Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas (Ñberordnung Monogononta), Bestimmugswerk begründet von Max Voigt. 2 Vols. Gebrüder Borntraeger Stuttgart.

  • Koste, W. & R. J. Shiel, 1987. Rotifera from Australian inland waters. I. Epiphanidae and Brachionidae (Rotifera: Monogononta). Invert. Taxon. 1: 949–1021.

    Google Scholar 

  • Lite, J. C. & D. D. Whitney, 1925. The role of aeration in the hatching of fertilized eggs of rotifers. J. exp. Zool. 43: 1–9.

    Google Scholar 

  • Marinone, M. C. & H. E. Zagarese, 1991. A field and laboratory study on factors affecting polymorphism in the rotifer Keratella tropica. Oecologia 86: 372–377.

    Google Scholar 

  • Pourriot, R., 1964. Étude experimentale de variations morphologiques chez certaines espéces de rotifères. Bull. Soc. Zool. Fr. 89: 555–561.

    Google Scholar 

  • Pourriot, R., 1974. Relations prédateur-proie chez les Rotifères: influence du prédateur (Asplanchna brightwelli) sur la morphologie de la proie (Brachionus bidentata). Ann. Hydrobiol. 5: 43–55.

    Google Scholar 

  • Pourriot, R., D. Benest & C. Rougier, 1982. Processus d'éclosion des œufs de durée de Brachionus calyciflorus Pallas (Rotifère). Comparaison de deux clones. Vie Milieu 32: 83–87.

    Google Scholar 

  • Pourriot, R., D. Benest & C. Rougier, 1983. Effet de la température sur l'éclosion d'œufs de durée provenant de populations naturelles de Brachionidae (Rotifères). Bull. Soc. Zool. Fr. 108: 59–66.

    Google Scholar 

  • Pourriot, R. & T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213–224.

    Google Scholar 

  • Sarma, S. S. S., 1987. Experimental studies on the ecology of Brachionus patulus (Müller) (Rotifera) in relation to food, temperature and predation. PhD thesis, University of Delhi, India.

  • Segers, H., 1995. Nomenclatural consequencesof some recent studies on Brachionus plicatilis (Rotifera, Brachionidae). Hydrobiologia 313/314: 121–122.

    Google Scholar 

  • Shiel, R. J., J. D. Green & D. L. Nielsen, 1998. Floodplain biodiversity: why are there so many species? Hydrobiologia 387/388: 39–46.

    Google Scholar 

  • Snell, T.W., B. E. Burke & S. D. Messur, 1983. Size and distribution of resting eggs in a natural population of the rotifer Brachionus plicatilis. Gulf Res. Rep. 7: 285–287.

    Google Scholar 

  • Stemberger, R. S., 1981. A general approach to the culture of planktonic rotifers. Can. J. Fish. aquat. Sci. 38: 721–724.

    Google Scholar 

  • Stemberger, R. S., 1990. Food limitation, spination and reproduction in Brachionus calyciflorus. Limnol. Oceanogr. 35: 33–44.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1984. Spine development in the rotifer Keratella cochlearis: induction by cyclopoid copepods and Asplanchna. Freshwat. Biol. 14: 639–647.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1987. Multiple species induction of morphological defenses in the rotifer Keratella testudo. Ecology 68: 370–378.

    Google Scholar 

  • Zagarese, H. E. & M. C. Marinone, 1992. Induction and inhibition of spine development in the rotifer Keratella tropica: evidence from field observations and laboratory experiments. Freshwat. Biol. 28: 289–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, J.J. Spine development in Brachionus quadridentatus from an Australian billabong: genetic variation and induction by Asplanchna. Hydrobiologia 446, 19–28 (2001). https://doi.org/10.1023/A:1017560703180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017560703180

Navigation