Skip to main content
Log in

Stroboscopic Quantization of Autonomous Systems

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We introduce a semiclassical quantization method which is based on a stroboscopic description of the classical and the quantum flows. We show that this approach emerges naturally when one is interested in extracting the energy spectrum within a prescribed and finite energy interval. The resulting semiclassical expression involves a finite number of periodic orbits whose energies are in the considered interval. Higher order corrections which reflect the sharp restriction of the spectrum to an interval are explicitly given. The relation to Fourier methods for extracting semiclassical spectra, such as harmonic inversion, is worked out. The constraints due to the finite dimension of the Hilbert space and the unitarity of the restricted quantum evolution operator are important ingredients in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

    Google Scholar 

  2. M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967); 10, 1004 (1969); 11, 1791 (1970).

    Google Scholar 

  3. C. Bloch and R. Balian, Ann. Phys. 69, 76 (1972).

    Google Scholar 

  4. P. Cvitanović and B. Eckhardt, Phys. Rev. Lett. 63, 823 (1989).

    Google Scholar 

  5. B. Eckhardt, Proceedings of the International School of Physics “Enrico Fermi,” Course CXIX “Quantum Chaos,” G. Casati, I. Guarneri, and U. Smilansky, eds. (North Holland, Amsterdam, 1993), p. 77.

    Google Scholar 

  6. B. Eckhardt, G. Russberg, P. Cvitanović, P. E. Rosenqvist, and P. Scherer, in Quantum Chaos, G. Casati and B. V. Chirikov, eds. (Cambridge University Press, 1995), p. 405.

  7. A. Wirzba, Phys. Rep. 309, 2 (1999).

    Google Scholar 

  8. B. Eckhardt and F. Haake, J. Phys. A: Math. Gen. 27, 4449 (1994).

    Google Scholar 

  9. G. Tanner, Nonlinearity 9, 1641 (1996).

    Google Scholar 

  10. P. Dahlvist, Chaos, Solitons, and Fractals 8, 1011 (1997).

    Google Scholar 

  11. G. Tanner, P. Scherer, E. B. Bogomolny, B. Eckhardt, and D. Wintgen, Phys. Rev. Lett. 67, 2410 (1991).

    Google Scholar 

  12. M. Sieber and F. Steiner, Phys. Rev. Lett. 67, 1941 (1991).

    Google Scholar 

  13. R. Aurich, C. Matthies, M. Sieber, and F. Steiner, Phys. Rev. Lett. 68, 1629 (1992).

    Google Scholar 

  14. E. Bogomolny and C. Schmitt, Nonlinearity 6, 523 (1993).

    Google Scholar 

  15. J. P. Keating and E. B. Bogomolny, Phys. Rev. Lett. 77, 1472 (1996).

    Google Scholar 

  16. M. V. Berry and J. Keating, J. Phys. A: Math. Gen. 23, 4839 (1990).

    Google Scholar 

  17. M. V. Berry and J. P. Keating, Proc. R. Soc. (London 437, 151 (1992).

    Google Scholar 

  18. J. P. Keating, Proc. R. Soc. (London) 436, 99 (1992).

    Google Scholar 

  19. E. B. Bogomolny, Nonlinearity 5, 805 (1992).

    Google Scholar 

  20. E. Doron and U. Smilansky, Nonlinearity 5, 1055, (1992).

    Google Scholar 

  21. U. Smilansky, in Proc. of the Les Houches Summer School on Mesoscopic Quantum Physics, E. Akkermans, G. Montambaux and J. L. Pichard, eds. (Elsevier Science, 1995).

  22. M. C. Gutzwiller, Chaos 3, 591 (1993).

    Google Scholar 

  23. T. Prosen, J. Phys. A 28, 4133 (1995); Physica D 91, 244 (1995).

    Google Scholar 

  24. E. J. Heller, in Proc. of the Les Houches Summer School on Chaos and Quantum Physics, M. J. Giannoni, A. Voros, and J. Zinn-Justin, eds. (North Holland, 1989), p. 547.

  25. D. Neuhauser, J. Chem. Phys. 93, 2611 (1990).

    Google Scholar 

  26. M. R. Wall and D. Neuhauser, J. Chem. Phys. 102, 8011 (1995).

    Google Scholar 

  27. V. A. Mandelshtam and H. S. Taylor, Phys. Rev. Lett. 78, 3274 (1997).

    Google Scholar 

  28. V. A. Mandelshtam and H. S. Taylor, J. Chem. Phys. 107, 6756 (1997).

    Google Scholar 

  29. V. A. Mandelshtam, J. Chem. Phys. 108, 9999 (1998).

    Google Scholar 

  30. J. Main, Phys. Rep. 316, 234 (1999).

    Google Scholar 

  31. J. Plemelj, Monat. Math. Phys. 15, 93 (1909).

    Google Scholar 

  32. F. Smithies, Duke Math. J. 8, 107 (1941).

    Google Scholar 

  33. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4: Analysis of Operators (Academic, New York, 1978).

    Google Scholar 

  34. M. V. Berry and K. E. Mount, Rep. Prog. Phys. 35, 315 (1972).

    Google Scholar 

  35. B. Eckhardt and G. Russberg, Phys. Rev. E 47, 1578 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckhardt, B., Smilansky, U. Stroboscopic Quantization of Autonomous Systems. Foundations of Physics 31, 543–556 (2001). https://doi.org/10.1023/A:1017525830691

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017525830691

Keywords

Navigation