Skip to main content
Log in

Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Alte Donau nowadays is an eutrophic urban lake within the cityofVienna. Increasing nutrient concentrations and massive bloomsofcyanobacteria mainly caused by Limnothrix redekei VanGoorand Cylindrospermopsis raciborskii (Wołsz.) SeenayyaetSubba Raju were recently registered. As a consequence Secchidepthwas significantly reduced especially during the summer season(minimum: 0.25 m). An investigation including water chemistry,phytoplankton, macrophytes, and sediment was initiated in 1993andextended to metazooplankton, ciliates and bacteria in 1994.Thefirst half of the year 1994 was characterised by relativelyclearwater and a high diversity of the phytoplankton compositiondue toflushing of the lake with water of better quality by the endof1993. Ciliates and metazooplankton held about 10% of thetotalbiomass of all the investigated trophic levels. The vanishingofthe remaining macrophytes enlarged the nutrient supply duringsummer 1994 and favoured the development of cyanobacteria. Thehighwater temperatures which excluded certain zooplankton species,andthe inedibility of the filaments further increased thedominance ofcyanobacteria. In November, when the algal bloom finallyceased,the highest bacterial numbers of the investigation periodoccurred.Thereafter, other algal groups, bacteria and metazooplanktongainedmore importance.Interactions are possible because of close overlap in spaceandtime due to the turbulent mixed conditions of the water bodyandthe change from the macrophyte dominated to the algaldominatedstable state. Planned restoration measures must aim tore-establishthe previous macrophyte dominated clear-waterstage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaver, J. R. & T. L. Crisman, 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246–253.

    Google Scholar 

  • Bogdan, K. G., J. J. Gilbert & P. L. Starkweather, 1980. In situ clearance rates of planktonic rotifers. In Dumont, H. J. & J. Green (eds), Rotatoria. Developments in Hydrobiology 1. Dr W. Junk Publishers, The Hague: 73–77. Reprinted from Hydrobiologia 73.

    Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1987. Quantitative comparison of food niches in some freshwater zooplankton. A multitracer approach. Oecologia 72: 331–340.

    Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.

    Google Scholar 

  • Carpenter, S. R. (ed.), 1988. Complex Interactions in Lake Commmunities. Springer Verlag, 283 pp.

  • Chróst, R. J. & M. A. Faust, 1983. Organic carbon release by phytoplankton: its composition and utilisation by bacterioplankton. J. Plankton Res. 5: 477–493.

    Google Scholar 

  • Dokulil, M. T. & G. A. Janauer, 1995. Alternative stable states during eutrophication of a shallow urban lake in Vienna, Austria. Proc. 6th Int. Conf. Conservation and management of lakes-Kasumigaura 95 Univ. Tsukuba, Japan 2: 730–733.

    Google Scholar 

  • Dokulil, M. T. & J. Mayer, in press. Population dynamics and photosynthetic rates of a Cylindrospermopsis-Limnothrixassociation in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algol. Stud.

  • Donabaum, K., M. Schagerl & M. T. Dokulil. Integrated lake management for the restoration of a stable equilibrium. In Ferguson, A., D. Harper, B. Brierley & G. Phillips (eds), The ecological Basis for River Management. John Wiley Publ., in press.

  • Foissner, W., 1994. Progress in taxonomy of planktonic freshwater ciliates. Mar. Microbiol. Food Webs 8: 9–35.

    Google Scholar 

  • Foissner, W., H. Berger & F. Kohmann, 1992. Taxonomische und ökologische Revision der Ciliaten des Sabrobiensystems. Band 2: Peritrichia, Heterotrichida, Odontostomatida. Informationsberichte des Bayer. Landesamts für Wasserwirtschaft, Heft 5/92, 502 pp.

  • Foissner, W., H. Berger & F. Kohmann, 1994. Taxonomische und ökologische Revision der Ciliaten des Sabrobiensystems. Band 3: Hymenostomata, Prostomatida, Nassulida. Informationsberichte des Bayer. Landesamts für Wasserwirtschaft, Heft 1/94, 548 pp.

  • Foissner, W., H. Blatterer, H. Berger & F. Kohmann, 1991. Taxonomische und ökologische Revision der Ciliaten des Sabrobiensystems. Band 1: Cyrtophorida, Oligotrichida, Hypotrichia, Colpodea. Informationsberichte des Bayer. Landesamts für Wasserwirtschaft, Heft 1/91, 478 pp

  • Geller, W. & H. Müller, 1981. The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia 49: 316–321.

    Google Scholar 

  • Gliwicz, Z. M., 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekol. pol. 17A: 663–708.

    Google Scholar 

  • Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter-feeding zooplankton in an eutrophic lake. Ekol. pol. 25: 179–225.

    Google Scholar 

  • Herzig, A., 1979. The zooplankton of the open lake. In Löffler, H. (ed.), Neusiedlersee. Limnology of a Shallow Lake in Central Europe. Dr W. Junk Publishers, The Hague: 281–336.

    Google Scholar 

  • Hobbie, J. E., R. J. Dayley & S. Jasper, 1977. Use of nuclepore filters for counting bacteria by epifluorescense microscopy. Appl. envir. Microbiol. 33: 1225–1228.

    Google Scholar 

  • Jerome, C. A., D. J. S. Montagnes & F. J. R. Taylor, 1993. The effect of the quantitative protargol stain and Lugol’s and Bouin’s fixatives on cell size: A more accurate estimate of ciliate species biomass. J. Euk. Microbiol. 40: 254–259.

    Google Scholar 

  • Kahl, A., 1930–1935. Urtiere oder Protozoa I. Wimpertiere oder Ciliata (Infusoria). In Dahl, F. (ed.), Die Tierwelt Deutschlands 26 (18, 21, 25, 30). Fischer, Jena, 1886 pp.

    Google Scholar 

  • Krainer, K. H., 1988. Alpha-Taxonomie und ökologie neuer sowie mehrerer wenig bekannter pelagischer Ciliaten (Protozoa: Ciliophora aus den Klassen Kinetophragminophora, Oligohymenophora, Polyhymenophora) einiger Grundwasserbaggerteiche des nördlichen Leibnitzer Feldes (Steiermark, Österreich). Dissertation an der Karl-Franzens-Universität Graz, 209 pp.

  • Lampert, W. & U. Sommer, 1993. Limnoökologie. Thieme Verlag, Stuttgart-New York, 440 pp.

    Google Scholar 

  • McCauley, E., 1984. The estimation of the abundance and biomass of Zooplankton in samples. In Downing, J. A. & F. H. Riegler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters, Blackwell Scientific Publications, Oxford, London: 228–265.

    Google Scholar 

  • McNaught, D. C., 1975. A hypothesis to explain the succession from calanoids to cladocerans during eutrophication. Verh. int. Ver. Limnol. 19: 724–731.

    Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in fresh-water pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Google Scholar 

  • Norland, S., 1993: The relationship between biomass and volume of bacteria. Curr. Meth. aquat. microbiol. ecol.: 303–307.

  • Pfister, G., 1995. Untersuchungen zur Nahrungsselektivität von Protozoen am Beispiel des omnivoren Ciliaten Stylonychia mytilus. Diplomarbeit, Univ. Innsbruck, 73 pp.

  • Posch, Th., 1995. Über die Aufnahme von feinpartikulärem Detritus durch Ciliaten. Diplomarbeit, Univ. Innsbruck, 64 pp.

  • Posch, Th. & H. Arndt, 1996. Uptake of sub-micrometre-and micrometre-sized detrital particles by bacterivorous and ominvorous ciliates. Microbiol. Ecol. 10: 45–53.

    Google Scholar 

  • Pourriot, R., 1977. Food and feeding habits of rotifera. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 243–260.

    Google Scholar 

  • Riemann, E. & M. Søndergaard, 1986. Regulation of bacterial secondary production in two eutrophic lakes and in experimental enclosures. Plankt. Res. 8: 519–536.

    Google Scholar 

  • Ruttner-Kolisko, A., 1977. Suggestions for biomass calculation of plankton rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 71–76.

    Google Scholar 

  • Skibbe, O., 1994. An improved quantitative protargol stain for ciliates and other planktonic protists. Arch. Hydrobiol. 130: 339–347.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Weisse, T., 1991. Ecological Characteristics of autotrophic picoplankton in a prealpine Lake. Int. Revue ges. Hydrobiol. 76: 493–504.

    Google Scholar 

  • Zaiss, U., 1985. Physiologische und ökologische Untersuchungen zur Regulation der Phosphatspeicherung bei Oscillatoria redekei. Arch. Hydrobiol./Suppl. 72: 166–219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, J., Dokulil, M.T., Salbrechter, M. et al. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342, 165–175 (1997). https://doi.org/10.1023/A:1017098131238

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017098131238

Navigation