Skip to main content
Log in

Bifurcation Phenomena for an Oxidation Reaction in a Continuously Stirred Tank Reactor I. Adiabatic Operation

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We investigate the steady-state multiplicity exhibited by the reaction of a fuel/air mixture in a continuously stirred tank reactor. The chemical mechanism used is a modification of a scheme due to Sal'nikov. We consider four cases; corresponding to the choice of fuel fraction, inflow temperature, inflow pressure, or precursor decay rate as the primary bifurcation parameter. From the perspective of fire-retardancy, the case when the fuel fraction is varied is the most important. In this case the steady-state diagrams provide a basis for a systematic investigation into the effectiveness of gas-phase active fire retardants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.F. Razon and R.A. Schmitz, Multiplicities and instabilities in chemically reacting systems-a review, Chem. Engrg. Sci. 42(5) (1987) 1005–1047.

    Google Scholar 

  2. V. Caprio, A. Insola and R. Barbella, Preflame processes in the ozone activated oxidation of methlycyclopentane, in: Combustion Institute European Symposium 1973, ed. F.J. Weinberg (Academic Press, New York, 1973) pp. 99–104.

    Google Scholar 

  3. V. Caprio, A. Insola and P.G. Lignola, Isobutane cool flames investigation in a continuous stirred tank reactor, in: Sixteenth International Symposium on Combustion(The Combustion Institute, 1976) pp. 1155–1163.

  4. P.G. Felton, B.F. Gray and N. Shank, Low temperature oxidation in a stirred flow reactor-II. Acetaldehyde, Combustion and Flame 27 (1976) 363–376.

    Google Scholar 

  5. B.F. Gray and P.G. Felton, Low-temperature oxidation in a stirred-flow reactor-I. Propane, Combustion and Flame 23 (1974) 295–304.

    Google Scholar 

  6. B.F. Gray, P.G. Felton and N. Shank, A theoretical and experimental study of the low temperature oxidation of acetaldehyde, in: 2nd European Symposium on Combustion(The Combustion Institute, 1975) p. 103.

  7. T. Faravelli, P. Gaffuri, E. Ranzi and J.F. Griffiths, Detailed thermokinetic modelling of alkane autoignition as a tool for the optimization of performance of internal combustion engines, Fuel 77(3) (1998) 147–155.

    Google Scholar 

  8. J.F. Griffiths, Thermokinetic oscillations in homogeneous gas-phase oxidations, in: Oscillations and Travelling Waves in Chemical Systems, eds. R.J. Field and M. Burger (Wiley, New York, 1985) pp. 529–564.

    Google Scholar 

  9. P. Gray and S.K. Scott, Experimental systems 2: Gas-phase reactions, in: Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics, International Series of Monographs on Chemistry, Vol. 21 (Clarendon Press, 1990) chapter 15.

  10. J.F. Griffiths and S.K. Scott, Thermokinetic interactions: Fundamentals of spontaneous ignition and cool flames, Progr. Energy Combust. Sci. 13 (1987) 161–197.

    Google Scholar 

  11. I.Y. Sal'nikov, A thermokinetic model of homogeneous periodic reactions, Doklady Akademii Nauk SSSR 60(3) (1948) 405–408 (in Russian).

    Google Scholar 

  12. I.Y. Salnikov, Contribution to the theory of the periodic homogenous chemical reactions II. A thermokinetic self-excited oscillating model, Zhurnal Fizicheskoi Khimii 23 (1949) 258–272 (in Russian).

    Google Scholar 

  13. L.P. Russo and B.W. Bequette, Impact of process design on the multiplicity behaviour of a jacketed exothermic CSTR, AIChe J. 41(1) (1995) 135–147.

    Google Scholar 

  14. C.T. Ewing, J.T. Hughes and H.W. Carhart, The extinction of hydrocarbon flames based on the heat-absorption processes which occur in them, Fire and Materials 8(3) (1984) 148–155.

    Google Scholar 

  15. B.F. Gray, Unified theory of explosions, cool flames and two-stage igntions, Part 1, Trans. Faraday Soc. 65 (1969) 1603–1613.

    Google Scholar 

  16. C.H. Yang and B.F. Gray, Unified theory of explosions, cool flames and two stage ignitions, part 2, Trans. Faraday Soc. 65 (1969) 1614–1622.

    Google Scholar 

  17. B.F. Gray and M.J. Roberts, Analysis of chemical kinetic systems over the entire parameter space I. The Sal'nikov thermokinetic oscillator, Proc. Roy. Soc. London Ser. A 416 (1988) 391–402.

    Google Scholar 

  18. B.F. Gray and M.J. Roberts, An asymptotic analysis of the Sal'nikov thermokinetic oscillator, Proc. Roy. Soc. London Ser. A 416 (1988) 425–441.

    Google Scholar 

  19. P. Gray, Instabilities and oscillations in chemical reactions in closed and open systems, Proc. Roy. Soc. London Ser. A 415 (1988) 1–34.

    Google Scholar 

  20. P. Gray, S.R. Kay and S.K. Scott, Oscillations of an exothermic reaction in a closed system I. Approximate (exponential) represenation of an Arrhenius temperature-dependence, Proc. Roy. Soc. London Ser. A 416 (1988) 321–341.

    Google Scholar 

  21. S.R. Kay and S.K. Scott, Oscillations of simple exothermic reactions in a closed system II. Exact Arrhenius kinetics, Proc. Roy. Soc. London Ser. A 416 (1988) 343–359.

    Google Scholar 

  22. J.G. Burnell, J.G. Graham-Eagle, B.F. Gray and G.C. Wake, Determination of critical ambient temperature for thermal ignition, IMA J. Appl. Math. 42 (1989) 147–154.

    Google Scholar 

  23. B.F. Gray, J.H. Merkin and G.C. Wake, Disjoint bifurcation diagrams in combustion systems, Math. Comput. Modelling 15(11) (1991) 25–33.

    Google Scholar 

  24. B.F. Gray and G.C. Wake, On the determination of critical ambient temperatures and critial initial temperatures for thermal ignition, Combustion and Flame 71 (1988) 101–104.

    Google Scholar 

  25. L.K. Forbes, Limit-cycle behaviour in a model chemical reaction: the Sal'nikov thermokinetic oscillator, Proc. Roy. Soc. London Ser. A 430 (1990) 641–651.

    Google Scholar 

  26. H.N. Moreira and W. Yuquan, Sufficient conditions for the Sal'nikov equation to have at least two limit cycles, J. Math. Chem. 15 (1994) 63–72.

    Google Scholar 

  27. L.K. Forbes and B.F. Gray, Forced oscillations in an exothermic chemical reaction, Dynamics and Stability of Systems 9(3) (1994) 253–269.

    Google Scholar 

  28. E.J. Delgado R., Complex dynamics in a simple exothermic reaction model, Latin American Applied Research 24 (1994) 109–115.

    Google Scholar 

  29. E.J. Delgado, Chaos in a spherical chemical reactor, Boletin Sociedad Chilena Quimica 40 (1995) 17–24.

    Google Scholar 

  30. E.J. Delgado, A.F. Münster and F.W. Schneider, Chaos control and tracking of periodic states in a forced thermokinetic oscillator model, Berichte der Bunsen-Gesellschaft Physical Chemistry 99(8) (1995) 1049–1056.

    Google Scholar 

  31. E.J. Delgado R., A thermal engine driven by a thermokinetic oscillator, J. Phys. Chem. 100(26) (1996) 11144–11147.

    Google Scholar 

  32. L.K. Forbes, M.R. Myerscough and B.F. Gray, On the presence of limit-cycles in a model exothermic chemical reaction: Sal'nikov's oscillator with two temperature-dependent reaction rates, Proc. Roy. Soc. London Ser. A 435 (1991) 591–604.

    Google Scholar 

  33. B.F. Gray and L.K. Forbes, Analysis of chemical kinetic systems over the entire parameter space IV. The Sal'nikov oscillator with two temperature-dependent reaction rates, Proc. Roy. Soc. London Ser. A 444 (1994) 621–642.

    Google Scholar 

  34. M.J. Sexton and L.K. Forbes, An exothermic chemical reaction with linear feedback control, Dynamics and Stability of Systems 11(3) (1996) 219–238.

    Google Scholar 

  35. U.S. Herges and E.H. Twizell, A finite-difference method for the numerical solution of the Sal'nikov thermokinetic oscillator problem, Proc. Roy. Soc. London Ser. A 449 (1995) 255–271.

    Google Scholar 

  36. D.P. Coppersthwaite, J.F. Griffiths and B.F. Gray, Oscillations in the H2 +Cl2 reaction: experimental measurements and numerical simulation, J. Chem. Phys. 95(18) (1991) 6961–6967.

    Google Scholar 

  37. P. Gray and J. Griffiths, Thermokinetic combustion oscillations as an alternative to thermal explosion, Combustion and Flame 78 (1989) 87–98.

    Google Scholar 

  38. J.F. Griffiths, S.R. Kay and S.K. Scott, Oscillatory combustion in closed vessels: Theoretical foundations and their experimental verification, in: Twenty-Second International Symposium on Combustion(The Combustion Institute, 1988) pp. 1597–1607.

  39. H.S. Sidhu, M.J. Sexton, M.I. Nelson, G.N. Mercer and R.O. Weber, A simple combustion process in a semibatch reactor, in: EMAC 2000 Proceedings, eds. R.L. May, G.F. Fitz-Gerald and I.H. Grundy (The Institution of Engineers, Australia, 2000) pp. 251–254.

    Google Scholar 

  40. M. Golubitsky and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Applied Mathematical Sciences 51, Vol. 1, 1st ed. (Springer, New York, 1985).

    Google Scholar 

  41. M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation theory via singularity theory, Comm. Pure Appl. Math. 32 (1979) 21–98.

    Google Scholar 

  42. V. Balakotaiah and D. Luss, Analysis of the multiplicity patterns of a CSTR, Chem. Engrg. Commun. 13 (1981) 111–132.

    Google Scholar 

  43. V. Balakotaiah and D. Luss, Analysis of the multiplicity patterns of a CSTR, Chem. Engrg. Commun. 19 (1982) 185–189.

    Google Scholar 

  44. V. Balakotaiah and D. Luss, Structure of the steady-state solutions of lumped-parameter chemically reacting systems, Chem. Engrg. Sci. 37(11) (1982) 1611–1623.

    Google Scholar 

  45. V. Balakotaiah and D. Luss, Global analysis of the multiplicity features of multi-reaction lumped parameter systems, Chem. Engrg. Sci. 39(5) (1984) 865–881.

    Google Scholar 

  46. M. Golubitsky and D. Schaeffer, The classification theorem, in: Singularities and Groups in Bifurcation Theory, Vol. 1, 1st ed. (Springer, New York, 1985) chapter IV, paragraph 2 pp. 196–202.

    Google Scholar 

  47. V. Balakotaiah, Steady-state multiplicity features of open chemically reacting systems, in: Reacting Flows: Combustion and Chemical Reactors, Part II, ed. G.S.S. Ludford, Lectures in Applied Mathematics, Vol. 24 (American Mathematical Society, Providence, RI, 1986) pp. 129–161.

    Google Scholar 

  48. P.L. Simon, H. Farkas and M. Wittman, Constructing global bifurcation diagrams by the parametric representation method, J. Comput. Appl. Math. 108 (1999) 157–176.

    Google Scholar 

  49. E.J. Doedel, T.F. Fairgrieve, B. Sandstede, A.R. Champneys, Y.A. Kuznetsov and X.Wang, AUTO 97: Continuation and bifurcation software for Ordinary Differential Equations (with HomCont) (March 1998). Available by anonymous ftp from ftp.cs.concordia.ca/pub/doedel/auto.

  50. D. Drysdale, An Introduction to Fire Dynamics, 2nd ed. (Wiley, New York, 1999).

    Google Scholar 

  51. R.M. Chemburkar, M. Morbidelli and A. Varma, Parametric sensitivity of a CSTR, Chem. Engrg. Sci. 41(6) (1986) 1647–1654.

    Google Scholar 

  52. H.F. Coward and G.W. Jones, Limits of flammability of gases and vapours, in: Bulletin(United States Bureau of Mines, 1952) p. 503.

  53. R. Hirst, N. Savage and K. Booth, Measurement of inerting concentrations, Fire Safety J. 4 (1981/82) 47–168.

    Google Scholar 

  54. D.B. Spalding, A theory of inflammability limits and flame-quenching, Proc. Roy. Soc. London Ser. A 240 (1957) 83–100.

  55. H.S. Sidhu, M.I. Nelson, G.N. Mercer and R.O.Weber, Dynamical analysis of an elementary X+Y? P reaction in a continuously stirred tank reactor, J. Math. Chem. 28(4) (2000) 353–375.

    Google Scholar 

  56. M.I. Nelson, Flammability limits in batch reactor: a Semenov model, submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, M., Sidhu, H. Bifurcation Phenomena for an Oxidation Reaction in a Continuously Stirred Tank Reactor I. Adiabatic Operation. Journal of Mathematical Chemistry 31, 155–186 (2002). https://doi.org/10.1023/A:1016222831327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016222831327

Navigation