Skip to main content
Log in

Thermal and mechanical properties of biodegradable hydrophilic-hydrophobic hydrogels based on dextran and poly (lactic acid)

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The thermal and mechanical properties of a new family of biodegradable hydrogels made of photocrosslinked dextran derivative of allyl isocyanate (dex-AI) and poly (D,L) lactide diacrylate macromer (PDLLAM) were studied. The changes of thermal and mechanical properties of the dex-AI/PDLLAM hydrogels as functions of dex-AI to PDLLAM composition ratio and immersion time in phosphate buffer solution at 37 °C were also investigated. Thermal property data showed that the chemical modification, crosslinking, swelling and hydrolytic degradation affected the glass transition and melting temperatures. Based on thermal data, no phase separation was observed in the bicomponent dex-AI/PDLLAM hydrogels. Mechanical property data showed that, by changing the composition ratio, dex-AI/PDLLAM hydrogels having a wide range of dry and swollen compression moduli could be obtained. The moduli of the dex-AI/DPLLAM hydrogels in dry state decreased with an increase in the PDLLAM composition due to the reduction in glass transition temperature of the hydrogels. The loss of mechanical strength in buffer solutions was attributed to the swelling-induced formation of 3D porous network structure in the early stage of immersion and the hydrolytic degradation of the PDLLAM in the late stage via the chain scission of ester linkages located in the PDLLAM backbone. Because swelling and degradation were composition dependent, the magnitude of the loss of mechanical strength was also composition-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Park, W. S. W. Shalaby and H. Park, in “Biodegradable Hydrogels For Drug Delivery” (Technomic Publishing AG, 1993) Chapter 1, p. 6.

    Google Scholar 

  2. K. R. Kamath and K. Park, in “Advanced Drug Delivery Reviews” (Elsevier Science Publishers B.V. 1993), Chapter 11, p. 60.

    Google Scholar 

  3. K. W. Leong, in “Polymers for Controlled Drug Delivery”, edited by P. J. Tarcha (CRC Press, Boca Raton, Ann Arbor and Boston, 1991), Chapter 7, p. 129.

    Google Scholar 

  4. W. E. Hennink, H. Talsma, J. C. H. Borchert, S. C. De Smedt and J. Demeester, J. Controlled Release 39 (1996) 47.

    Google Scholar 

  5. W. N. E. Van Dijk-Wolthuis, J. A. M. Hoogeboom, M. J. Van Steenbergen, S. K. Y. Tsang and W. E. Hennink, Macromolecules 30 (1997) 4639.

    Google Scholar 

  6. S. Shah, K. J. Zhu and C. G. Pitt, J. Biomater. Sci. Polymer Edn. 5 (1994) 421.

    Google Scholar 

  7. T. K. Wang, I. Iliopoulos and R. Audebert, “ACS Symposium Series 467” (American Chemical Society, Washington, DC, 1991) pp. 218-231.

    Google Scholar 

  8. M. E. Mcneill and N. B. Graham, J. Biomater. Sci. Polymer Edn. 5 (1993) 111.

    Google Scholar 

  9. Y. Zhang, C.-Y. Won and C.-C. Chu, J. Polym. Sci., Part A: Polym. Chem. 37 (1999) 4554.

    Google Scholar 

  10. Y. L. Zhang, C. Y. Won and C. C. Chu, ibid. 38 (2000) 2392.

    Google Scholar 

  11. Y. Zhang and C. C. Chu, J. Biomed. Mater. Res. 59 (2002) 318.

    Google Scholar 

  12. Y. L. Zhang and C. C. Chu, ibid. 54 (2001) 1.

    Google Scholar 

  13. Y. Zhang and C. C. Chu, J. Biomat. Appl. (Pending).

  14. C. Migliaresi, L. Fambri and D. Cohn, J. Biomater. Sci. Polymer Edn. 5 (1994) 591.

    Google Scholar 

  15. F. Castelli, G. Pitarresi, V. Tomarchio and G. Giammona, J. Controlled Release 45 (1997) 103.

    Google Scholar 

  16. V. Carelli, G. D. Colo, E. Nannipieri and M. F. Serafini, Int. J. Pharm. 94 (1993) 103.

    Google Scholar 

  17. D. Mirejovsky, A. S. Patel and G. Young, Biomaterials 14 (1993) 1080.

    Google Scholar 

  18. S. S. Shah, K. J. Zhu and C. G. Pitt, J. Biomater. Sci. Polymer Edn. 5 (1994) 421.

    Google Scholar 

  19. O. Ariga, M. Kato, T. Sano, Y. Nakazawa and Y. Sano, J. Ferment. Bioeng. 76 (1993) 203.

    Google Scholar 

  20. Y. Miyachi, K. Jokei, M. Oka and T. Hayashi, J. Biomater. Sci. Polymer Edn. 7 (1996) 805.

    Google Scholar 

  21. Y. M. Lee and S. S. Kim, Polymer. 38 (1997) 2415.

    Google Scholar 

  22. S. P. Gorman, M. M. Tunney, P. F. Keane, K. Van Bladel and B. Bley, J. Biomed. Mater. Res. 39 (1998) 642.

    Google Scholar 

  23. L. Vervoort, P. Rombaut, G. V. Den Mooter, P. Augustijns and R. Kinget, Int. J. Pharm. 172 (1998) 137.

    Google Scholar 

  24. J. Ch. Gayet, P. He and G. Fortier, J. Bioact. Compat. Polym. 13 (1998) 179.

    Google Scholar 

  25. P. Ravichandran, K. L. Shantha and K. Panduranga Rao, Int. J. Pharm. 154 (1997) 89-94.

    Google Scholar 

  26. M. Kakizaki, H. Yamamoto, T. Ohe and T. Hideshima, “Molecular motions and dielectric relaxations in chitin, chitosan and related polymers, in Chitin and Chitosan”, edited by G. Skjak-Braek, T. Anthonsen and P. Sandford (Elsevier Applied Science, London and New York), p. 512.

  27. Y. L. Zhang and C. C. Chu, J. Mater. Sci. Mater. In Medicine (in Press).

  28. G. Pitarresi, V. Tomarchio and G. Cavallaro, J. Bioact. Compat. Polym. 11 (1996) 328.

    Google Scholar 

  29. F. Rodriguez, “Principles of polymer systems” (Taylor & Francis, Washington, DC, 1996) Chapter 3, p. 56.

    Google Scholar 

  30. F. O. Eschbach and S. J. Huang, J. Bioact. Compat. Polym. 9 (1994) 29.

    Google Scholar 

  31. Y. L. Zhang and C. C. Chu, Bioactive & Compatible Polym. (Pending).

  32. C. C. Chu, J. A. Von Fraunhofer and H. P. Greisler, “Wound Closure Biomaterials and Devices” (CRC Press, Inc., Boca Raton, Florida, 1997) pp. 107-128

    Google Scholar 

  33. Z. Q. Gu, J. M. Xiao and X. H. Zhang, Bio-Med. Mater. Eng. 8 (1998) 75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Chu, CC. Thermal and mechanical properties of biodegradable hydrophilic-hydrophobic hydrogels based on dextran and poly (lactic acid). Journal of Materials Science: Materials in Medicine 13, 773–781 (2002). https://doi.org/10.1023/A:1016123125046

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016123125046

Keywords

Navigation