Skip to main content
Log in

Modulation of a Plant Mitochondrial K+ ATP Channel and Its Involvement in Cytochrome c Release

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Pea stem mitochondria, resuspended in a KCl medium (de-energized mitochondria), underwent a swelling, as a consequence of K+ entry, that was inhibited by ATP. This inhibition was partially restored by GTP and diazoxide (K+ ATP channel openers). In addition, glyburide and 5-hydroxydecanate (K+ ATP channel blockers) induced an inhibition of the GTP-stimulated swelling. Mitochondrial swelling was inhibited by H2O2, but stimulated by NO. The same type of responses was also obtained in succinate-energized mitochondria. When the succinate-dependent transmembrane electrical potential (ΔΨ) had reached a steady state, the addition of KCl induced a dissipation that was inhibited by H2O2 and stimulated by NO. The latter stimulation was prevented by carboxy-PTIO, a NO scavenger. Phenylarsine oxide (a thiol oxidant) and NEM (a thiol blocker) stimulated the KCl-induced dissipation of ΔΨ, while DTE prevented this effect in both cases. In addition, DTE transiently inhibited the NO-induced dissipation of ΔΨ, but then it caused a more rapid collapse. These results, therefore, show that the plant mitochondrial K+ ATP channel resembles that present in mammalian mitochondria and that it appears to be modulated by dithiol–disulfide interconversion, NO and H2O2. The aperture of this channel was linked to the partial rupture of the outer membrane. The latter effect led to a release of cytochrome c, thus suggesting that this release may be involved in the manifestation of programmed cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abderrahmane, A., Salvail, D., Dumoulin, M., Garon, J., Cadieux, A., and Rousseau, E. (1998). Am. J. Respir. Cell Mol. Biol. 19, 485–487.

    Google Scholar 

  • Ahern, G. P., Hsu, S. F., and Jackson, M. B. (1999). J. Physiol. 520, 165–176.

    Google Scholar 

  • Amano, F., and Noda, T. (1995). FEBS Lett. 368, 425–428.

    Google Scholar 

  • Arpagaus, S., Rawyler, A., and Braendler, R. (2002). J. Biol. Chem. 277, 1780–1788.

    Google Scholar 

  • Balk, J., and Leaver, C. J. (2001). Plant Cell 13, 1803–1818.

    Google Scholar 

  • Balk, J., Leaver, C. J., and McCabe, P. F. (1999). FEBS Lett. 463, 151–154.

    Google Scholar 

  • Bernardi, P. (1999). Physiol. Rev. 79, 1127–1156.

    Google Scholar 

  • Bernardi, P., Petronilli, V., Di Lisa, F., and Forte, M. (2001). Trends Biochem. Sci. 26, 112–117.

    Google Scholar 

  • Bradford, M. M. (1976). Anal. Biochem. 72, 248–254.

    Google Scholar 

  • Cohen, G. M. (1997). Biochem. J. 325, 1–16.

    Google Scholar 

  • Costantini, P., Colonna, R., and Bernardi, P. (1998). Biochim. Biophys. Acta 1365, 385–392.

    Google Scholar 

  • Danon, A., Delorme, V., Mailhac, N., and Gallois, P. (2000). Plant Physiol. Biochem. 38, 647–655.

    Google Scholar 

  • del Pozo, O., and Lam, E. (1998). Curr. Biol. 8, 1129–1132.

    Google Scholar 

  • Delledonne, M., Xia, Y., Dixon, R. A., and Lamb, C. (1998). Nature 394, 585–588.

    Google Scholar 

  • Douce, R., Christensen, E. L., and Bonner, W. D., Jr. (1973). Biochim. Biophys. Acta 292, 105–116.

    Google Scholar 

  • Fortes, F., Castilho, R. F., Catisti, R., Carnieri, E. G. S., and Vercesi, A. E. (2001). J. Bioenerg. Biomembr. 33, 43–51.

    Google Scholar 

  • Garlid, K. D. (1996). Biochim. Biophys. Acta 1275, 123–126.

    Google Scholar 

  • Garlid, K. D., Sun, X., Paucek, P., and Woldegiorgis, G. (1995). Methods Enzymol. 260, 331–348.

    Google Scholar 

  • Gottlieb, R. A. (2000). FEBS Lett. 482, 6–12.

    Google Scholar 

  • Green, D. R., and Reed, J. C. (1998). Science 281, 1309–1312.

    Google Scholar 

  • Greenberg, J. T. (1996). Proc. Natl. Acad. Sci. U.S.A. 93, 12094–12097.

    Google Scholar 

  • Greenberg, J. T. (1997). Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 525–545.

    Google Scholar 

  • Grigoriev, S. M., Skarga, Yu. Yu., Mironova, G. D., and Marinov, B. S. (1999). Biochim. Biophys. Acta 1410, 91–96.

    Google Scholar 

  • Hanson, J. B. (1985). In Encyclopedia of Plant Physiology. Higher Plant Cell Respiration (Douce, R., and Day, D. A., eds.), Springer, Berlin, pp. 248–280.

    Google Scholar 

  • Hausladen, A., and Stamler, J. S. (1998). Proc. Natl. Acad. Sci. U.S.A. 95, 10345–10347.

    Google Scholar 

  • Havel, L., and Durzan, D. J. (1996). Bot. Acta 109, 268–277.

    Google Scholar 

  • Holmuhamedov, E. L., Jovanović, S., Dzeja, P. P., Jovanović, A., and Terzic, A. (1998). Am. J. Physiol. 275, H1567–H1576.

    Google Scholar 

  • Jabůrek, M., Yarov-Yarovoy, V., Paucek, P., and Garlid, K. D. (1998). J. Biol. Chem. 273, 13578–13582.

    Google Scholar 

  • Jones, A. (2000). Trends Plant Sci. 5, 225–230.

    Google Scholar 

  • Jones, A. M., and Dangl, J. L. (1996). Trends Plant Sci. 1, 114–119.

    Google Scholar 

  • Lacomme, C., and Santa Cruz, S. (1999). Proc. Natl. Acad. Sci. U.S.A. 96, 7956–7961.

    Google Scholar 

  • Lam, E., del Pozo, O., and Pontier, D. (1999). Trends Plant Sci. 4, 419–421.

    Google Scholar 

  • Lurin, C., Güclü, J., Cheniclet, C., Carde, J.-P., Barbier-Brygoo, H., and Maurel, C. (2000). Biochem. J. 348, 291–295.

    Google Scholar 

  • Mather, M., and Rottenberg, H. (2001). Biochim. Biophys. Acta 1503, 357–368.

    Google Scholar 

  • Mironova, G. D., Skarga, Yu. Yu., Grigoriev, S. M., Negoda, A. E., Kolomytkin, O. V., and Marinov, B. S. (1999). J. Bioenerg. Biomembr. 31, 159–163.

    Google Scholar 

  • Pastore, D., Stoppelli, M. C., Di Fonzo, N., and Passarella, S. (1999). J. Biol. Chem. 274, 26683–26690.

    Google Scholar 

  • Paucek, P., Yarov-Yarovoy, V., Sun, X., and Garlid, K. D. (1996). J. Biol. Chem. 271, 32084–32088.

    Google Scholar 

  • Pedersen, P. L. (1999). J. Bioenerg. Biomembr. 31, 291–304.

    Google Scholar 

  • Pennell, R. I., and Lamb, C. (1997). Plant Cell 9, 1157–1168.

    Google Scholar 

  • Petrussa, E., Casolo, V., Braidot, E., Chiandussi, E., Macrì, F., and Vianello, A. (2001). J. Bioenerg. Biomembr. 33, 107–117.

    Google Scholar 

  • Sasabe, M., Takeucki, K., Kamoun, S., Ichinose, Y., Govers, F., Toyoda, K., Shiraishi, T., and Yamada, T. (2000). Eur. J. Biochem. 267, 5005–5013.

    Google Scholar 

  • Sasaki, N., Sato, T., Ohler, A., O'Rourke, B., and Marbàn, E. (2000). Circulation 101, 439–445.

    Google Scholar 

  • Sun, Y. L., Zhao, Y., Hong, X., and Zhai, Z. H. (1999). FEBS Lett. 462, 317–321.

    Google Scholar 

  • Susin, S. A., Zamzami, N., and Kroemer, G. (1998). Biochim. Biophys. Acta 1366, 151–165.

    Google Scholar 

  • Tester, M., and Leigh, R. A. (2001). J. Exp. Bot. 52, 445–457.

    Google Scholar 

  • Tsujimoto Y., and Shimizu, S. (2000). FEBS Lett. 466, 6–10.

    Google Scholar 

  • Van Camp, W., Van Montagu, M., and Inzé, D. (1998). Trends Plant Sci. 3, 330–334.

    Google Scholar 

  • Yarov-Yarovoy, V., Paucek, P., Jabůrek, M. V., and Garlid, K. D. (1997). Biochim. Biophys. Acta 1321, 128–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Vianello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiandussi, E., Petrussa, E., Macrì, F. et al. Modulation of a Plant Mitochondrial K+ ATP Channel and Its Involvement in Cytochrome c Release. J Bioenerg Biomembr 34, 177–184 (2002). https://doi.org/10.1023/A:1016079319070

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016079319070

Navigation