Skip to main content
Log in

In-vitro Cell Culture Models of the Nasal Epithelium: A Comparative Histochemical Investigation of Their Suitability for Drug Transport Studies

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate different in-vitro cell culture models for their suitability to study drug transport through cell monolayers.

Methods. Bovine turbinate cells (BT; ATCC CRL 1390), human nasal septum tumor cells (RPMI, 2650; ATCC CCL 30), and primary cell cultures of human nasal epithelium were characterized morphologically and histochemically by their lectin binding properties. The development of tight junctions in culture was monitored by actin staining and transepithelial electrical resistance measurements.

Results. The binding pattern of thin-sections of excised human nasal respiratory epithelium was characterized using a pannel of fluorescently-labelled lectins. Mucus in goblet cells was stained by PNA, WGA and SBA, demonstrating the presence of terminal N-acetylglucosamine, N-acetylgalactosamine and galactose residues respectively in the mucus of human nasal cells. Ciliated cells revealed binding sites for N-acetylglucosamine, stained by WGA, whereas Con A, characteristic for mannose moieties, labelled the apical cytoplasm of epithelial cells. Binding sites for DBA were not present in this tissue. Comparing three different cell culture models: BT, RPMI 2650, and human nasal cells in primary culture using three lectins (PNA, WGA, Con A) as well as intracellular actin staining and transepithelial electrical resistance measurements we found, that only human nasal epithelial cells in primary culture showed differentiated epithelial cells, ciliated nasal cells and mucus producing goblet cells, which developed confluent cell monolayers with tight junctions.

Conclusions. Of the in-vitro cell culture models studied, only human nasal cells in primary culture appears to be suitable for drug transport studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. S. E. Su. Nasal route of peptide and protein drug delivery. In: V. H. L. Lee (ed.). Peptide and protein drug delivery. Advances in Parenteral Sciences 4:595–631 (1990).

  2. Y. W. Chien, K. S. E. Su, and S.-F. Chang. Nasal systemic drug delivery. Marcel Dekker N.Y. (1989).

    Google Scholar 

  3. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749 (1989).

    CAS  PubMed  Google Scholar 

  4. G. Wilson, I. F. Hassan, C. J. Dix, I. Williamson, and M. Mackay. Transport and permeability properties of human Caco-2 cells: An in vitro model of the intestinal epithelial cell barrier. J. Control. Rell. 11:25–40 (1990).

    Google Scholar 

  5. G. E. Moore and A. A. Sandberg. Studies of a human tumor cell line with a diploid karyotype. Cancer 17:170–175 (1964).

    Google Scholar 

  6. G. M. Anderson and S. O. Freytag. Synergistic activation of a human promoter in vivo by transcription factor Spl. Mol. Cell. Biol. 11:1935–1943 (1991).

    Google Scholar 

  7. M. J. Jackson, S. J. Allen, A. L. Beaudet, and W. E. O'Brien. Metabolite regulation of argininosuccinate synthetase in cultured human cells. J. Biol. Chem. 263:16388–16394 (1988).

    Google Scholar 

  8. R. Moll, R. Krepler, and W. W. Franke. Complex cytokeratin polypeptide pattern observed in certain human carcinomas. Differentiation 23:256–269 (1983).

    Google Scholar 

  9. H. Peter, H. Wunderli-Allenspach, C. Gammert, and H. P. Merkle. Human nasal cell culture system to study biotransformation of peptides. Eur. J. Pharm. Biopharm. Abstract 114 (1992).

  10. T. L. Lewis, J. F. Ridpath, S. R. Bolin, and E. S. Berry. Detection of BVD viruses using synthetic oligonucleotides. Arch.Virol. 117:269–278 (1991).

    Google Scholar 

  11. C. Onyekaba, L. Bueon, P. King, J. Fahrmann and S. M. Goyal. Susceptibility of various cell culture systems to pseudorabies virus. Comp. Immun. Microbiol. Infect. Dis. 10:163–166 (1987).

    Google Scholar 

  12. R. B. Peterson and S. M. Goyal. Propagation and quantitation of animal herpes viruses in eight cell culture systems. Comp. Immun. Microbiol. Infect. Dis. 11:93–98 (1988).

    Google Scholar 

  13. K. L. Audus and M. R. Tavakoli-Saberi. Aminopeptidases of newborn bovine nasal turbinate epithelial cell cultures. Int. J. Pharm. 76:247–255 (1991).

    Google Scholar 

  14. C.-M. Lehr and V. H. L. Lee. Binding and transport of some bioadhesive plant lectins across Caco-2 cell monolayers. Pharm. Res. 10:1796–1799 (1993).

    Google Scholar 

  15. H.-J. Gabius and S. Gabius (ed.). Lectins and Cancer. Springer Verlag, Heidelberg (1991).

    Google Scholar 

  16. H. G. C. J. M. Hendriks, J. F. J. G. Koninkx, M. Draaijer, J. E. van Dijk, J. A. M. Raaijmakers, and J. M. V. M. Mouwen. Quantitative determination of the lectin binding capacity of small intestinal brush-border membrane. An enzyme linked lectin sorbent assay (ELLSA). Biochim. Biophys. Acta 905:371–375 (1987).

    Google Scholar 

  17. W. M. Pardridge. Peptide drug delivery to the brain. Raven Press N.Y. (1991).

    Google Scholar 

  18. B. A. Schulte and S. S. Spicer. Light microscopic histochemical detection of sugar residues in secretory glycoproteins of rodent and human tracheal glands with lectin-horseradish peroxidase conjugates and the galactose oxidase Schiff sequence. J. Histochem. Cytochem. 31:391–403 (1983).

    Google Scholar 

  19. S. S. Spicer, B. A. Schulte, and G. N. Thomopoulos. Histochemical properties of the respiratory tract epithelium in different species. Am. Rev. Respir. Dis. 128:S20–S26 (1983).

    Google Scholar 

  20. U. Werner and T. Kissel. Development of a human nasal epithelial cell culture model and its suitability for transport and metabolism studies under in-vitro conditions. Pharm. Res. 12:565–571 (1995).

    Google Scholar 

  21. E. K. Anderberg, T. Lindmark, and P. Artursson. Sodium caprate elicits dilatations in human intestinal tight junctions and enhances drug absorption by the paracellular route. Pharm. Res. 10:857–864 (1993).

    Google Scholar 

  22. J. L. Madara. Intestinal absorptive cell tight junctions are linked to cytoskeleton. Am. J. Physiol. 253:C171–C175 (1987).

    Google Scholar 

  23. M. Gulisano, S. Gheri Bryk, G. Gheri, E. Sgambati, A. Curreli, W. Masala, and P. Pacini. Histochemical study of human nasopharyngeal epithelium by horseradish peroxidase conjugated lectins. Epith. Cell Biol. 3:1–6 (1994).

    Google Scholar 

  24. M. Mazzuca, M. Lhermitte, J. J. Lafitte, and P. Roussel. Use of lectins for detection of glycoconjugates in the glandular cells of the human bronchial mucosa. J. Histochem. Cytochem. 30:956–966 (1982).

    Google Scholar 

  25. S. Takami, M. L. Getchell, and T. V. Getchell. Lectin histochemical localisation of galactose, N-acetylgalactosamine, and N-acetyl-glucosamine in glycoconjugates of the rat vomeronasal organ, with comparison to the olfactory and septal mucosae. Cell Tissue Res. 277:211–230 (1994).

    Google Scholar 

  26. B. Lundh, U. Brockstedt, and K. Kristensson. Lectin-binding pattern of neuroepithelial and respiratory epithelial cells in the mouse nasal cavity. Histochem. J. 21:33–43 (1989).

    Google Scholar 

  27. A. T. Mariassy, C. G. Plopper, J. A. St.George, and D. W. Wilson. Tracheobronchial epithelium of the sheep: VI. Lectin histochemical characterization of secretory epithelial cells. Anat. Rec. 222:49–59 (1988).

    Google Scholar 

  28. J. Fischer, P. J. Klein, M. Vierbucher, B. Skutta, G. Uhlenbruck and R. Fischer. Characterization of glycoconjugates of human gastrointestinal mucosa by lectines. J. Histochem. Cytochem. 32:681–689 (1984).

    Google Scholar 

  29. E. Essner, J. Schreiber, and R. A. Griewski. Localization of carbohydrate components in rat colon with fluoresceinated lectins. J. Histochem. Cytochem. 26:452–458 (1978).

    Google Scholar 

  30. I. E. Liener, N. Sharon, and I. J. Goldstein (ed.). The lectins: Properties, functions and applications in biology and medicine. Academic Press, Orlanda, FL pp. 309–328 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, U., Kissel, T. In-vitro Cell Culture Models of the Nasal Epithelium: A Comparative Histochemical Investigation of Their Suitability for Drug Transport Studies. Pharm Res 13, 978–988 (1996). https://doi.org/10.1023/A:1016038119909

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016038119909

Navigation