Skip to main content
Log in

Phase Transitions of the Liquid–Liquid Type and a Change in the Particle Charge in Colloidal Solutions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The thermodynamic properties are studied for the solutions of charged colloidal particles with ionizable surface groups. The microscopic mechanism of microion binding at surface groups is considered. The free energy of the system in the parameter range where the usual theory of such solutions is inadequate (a range of practical interest) is calculated using the method of the thermodynamic perturbation theory. The first-order phase transition of the liquid–liquid type is shown to be possible; in this phase transition, a phase with a high concentration of colloidal particles that have a higher charge coexists with a phase with a lower concentration of particles that have a lower charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mendez-Alcaraz, J.M., D'Aguanno, B., and Klein, R., Physica A (Amsterdam), 1991, vol. 178, no. 2, p. 421.

    Google Scholar 

  2. Lowen, H., Madden, P.A., and Hansen, J.P., Phys. Rev. Lett., 1992, vol. 68, no. 7, p. 1081.

    Google Scholar 

  3. D'Aguanno, B. and Klein, R., Phys. Rev. A, 1992, vol. 46, no. 12, p. 7652.

    Google Scholar 

  4. Mendez-Alcaraz, J.M., D'Aguanno, B., and Klein, R., Langmuir, 1992, vol. 8, no. 12, p. 2913.

    Google Scholar 

  5. Lowen, H., Hansen, J.P., and Madden, P.A., J. Chem. Phys., 1993, vol. 98, no. 2, p. 3275.

    Google Scholar 

  6. Brilliantov, N.V. and Revokatov, O.P., Molekulyarnaya dinamika neuporyadochennykh sred (Molecular Dynamics of Disordered Media), Moscow: Mosk. Gos. Univ., 1996.

    Google Scholar 

  7. Derjaguin, B.V. and Landau, L.D., Acta Physicochim. URSS, 1941, vol. 14, p. 633.

    Google Scholar 

  8. Verwey, E.J. and Overbeek, J.Th., Theory of the Stability of Lyophobic Colloids, Amsterdam: Elsevier, 1948.

    Google Scholar 

  9. Tata, B.V.R., Rajalakshmi, M., and Arora, A.K., Phys. Rev. Lett., 1992, vol. 69, no. 26, p. 3781.

    Google Scholar 

  10. Brilliantov, N.V., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1993, vol. 48, no. 6, p. 4536.

    Google Scholar 

  11. Ito, K., Yoshida, H., and Ise, N., Science, 1994, vol. 263, p. 66.

    Google Scholar 

  12. Tata, B.V.R., Yamahara, E., Rajamani, P.V., and Ise, N., Phys. Rev. Lett., 1997, vol. 78, no. 13, p. 2660.

    Google Scholar 

  13. Yoshida, H., Yamanaka, J., Koda, T., et al., Langmuir, 1998, vol. 14, p. 569.

    Google Scholar 

  14. Palberg, T. and Wurth, M., Phys. Rev. Lett., 1994, vol. 72, no. 5, p. 786.

    Google Scholar 

  15. Yamanaka, J., Yoshida, H., Koda, T., et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 80, p. 5806.

    Google Scholar 

  16. Matsuoka, H., Harada, T., and Yamaoka, Y., Langmuir, 1994, vol. 10, p. 4423.

    Google Scholar 

  17. Ise, N. and Smalley, M.V., Phys. Rev. B: Condens. Matter, 1994, vol. 50, p. 16 722.

    Google Scholar 

  18. Warren, P.B., J. Chem. Phys., 2000, vol. 112, no. 10, p. 4683.

    Google Scholar 

  19. Van Roij, R. and Hansen, J.P., Phys. Rev. Lett., 1997, vol. 79, no. 16, p. 3082.

    Google Scholar 

  20. Van Roij, R., Dijkstra, M., and Hansen, J.P., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 59, no. 2, p. 2010.

    Google Scholar 

  21. Levin, Y., Barbosa, M.C., and Tamashiro, M.N., Europhys. Lett., 1998, vol. 41, no. 1, p. 123.

    Google Scholar 

  22. Baus, M. and Hansen, J.P., Phys. Rep., 1980, vol. 59, p. 1.

    Google Scholar 

  23. Vayssilov, G. and Tsekov, R., Surf. Sci., 1991, vol. 255, p. 355.

    Google Scholar 

  24. Yukhnovskii, I.R. and Golovko, M.F., Statisticheskaya teoriya klassicheskikh neravnovesnykh sistem (Statistical Theory of Classic Nonequilibrium Systems), Kiev: Naukova Dumka, 1980.

    Google Scholar 

  25. Hubbard, J. and Schofield, P., Phys. Lett., 1972, vol. 40, no. 3, p. 245.

    Google Scholar 

  26. Brilliantov, N.V., Contrib. Plasma Phys., 1998, vol. 38, no. 4, p. 489.

    Google Scholar 

  27. Brilliantov, N.V., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 58, p. 2628.

    Google Scholar 

  28. Kubo, R., J. Phys. Soc. Jpn., 1962, vol. 17, no. 7, p. 1100.

    Google Scholar 

  29. Netz, R. and Orland, H., Europhys. Lett., 1999, vol. 45, no. 6, p. 726.

    Google Scholar 

  30. Carnahan, N.F. and Starling, K.E., J. Chem. Phys., 1969, vol. 10, no. 2, p. 635.

    Google Scholar 

  31. Young, D.A., Corey, E.M., and DeWitt, H.E., Phys. Rev. A: Gen. Phys., 1991, vol. 44, no. 10, p. 6508.

    Google Scholar 

  32. Landau, L.D. and Lifshits, E.M., Statisticheskaya Fizika (Statistical Physics), Moscow: Nauka, 1976, part 2.

    Google Scholar 

  33. Zimm, B. and LeBret, M., J. Biomol. Struct. Dyn., 1983, vol. 1, p. 461.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brilliantov, N.V., Malinin, V.V. Phase Transitions of the Liquid–Liquid Type and a Change in the Particle Charge in Colloidal Solutions. Colloid Journal 64, 261–269 (2002). https://doi.org/10.1023/A:1015989305560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015989305560

Keywords

Navigation