Skip to main content
Log in

Helical Structures: The Geometry of Protein Helices and Nanotubes

  • Published:
Structural Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In nature, helical structures arise when identical structural subunits combine sequentially, the orientational and translational relation between each unit and its predecessor remaining constant. A helical structure is thus generated by the repeated action of a screw transformation acting on a subunit. A plane hexagonal lattice wrapped round a cylinder provides a useful starting point for describing the helical conformations of protein molecules, for investigating the geometrical properties of carbon nanotubes, and for certain types of dense packings of equal spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sadoc J. F.; Rivier, N. Eur. Phys. J. 1999, B12, 309.

    Google Scholar 

  2. Boerdijk, A. H. Philips Res. Rept. 1952, 7, 303.

    Google Scholar 

  3. Coxeter, H. S. M. Introduction to Geometry 1st edn.; Wiley: New York, 1961.

    Google Scholar 

  4. Coxeter, H. S. M. Regular Polytopes; Macmillan: New York, 1948 (Dover: 1973).

    Google Scholar 

  5. Coxeter, H. S. M. Can. Math. Bull. 1985, 28, 385.

    Google Scholar 

  6. Lehninger, L.; Nelson D. L.; Cox, M. M. Principles of Biochemistry; Worth: New York, 1993.

    Google Scholar 

  7. Buckminster Fuller, R. Synergetics; Macmillan: New York, 1975.

    Google Scholar 

  8. Iijima, S. Nature (London) 1991, 354, 56.

    Google Scholar 

  9. Tanaka, K.; Yamabe, T.; Fukui K., Eds., The Science and Technology of Carbon Nanotubes; Elsevier: New York, 2000.

    Google Scholar 

  10. Sadoc, J. F.; Mosseri, R. Frustration Géometrique; Eyroles: Paris, 1997; Geometrical Frustration; Cambridge University Press: Cambridge, 1999.

    Google Scholar 

  11. Lord, E. A.; Ranganathan, S. Euro. Phys. J. 2002, 15, 335.

    Google Scholar 

  12. Mackay, A. L.; Terrones, H. Phil. Trans. Roy. Soc. London A 1993, 343, 113.

    Google Scholar 

  13. Terrones, H.; Mackay, A. L. Chem. Phys. Lett. 1993, 207, 45.

    Google Scholar 

  14. Terrones, H.; Terrones, M. Fullerene Sci. Technol. 1996, 4, 517.

    Google Scholar 

  15. Terrones, H.; Terrones, M. Phys. Rev. B 1997, 55, 9969.

    Google Scholar 

  16. Hyde, S. T.; Andersson, S.; Blum, Z.; Lidin, S.; Larsson, K.; Landt, T.; Ninham, B. W. The Language of Shape; Elsevier Science: Amsterdam, 1997.

    Google Scholar 

  17. Hyde S. T.; Ramsden, S. In Mathematical Chemistry D. Bonchev and D. Rouvray, Eds.; Gordon and Breach, New York, 2000; Vol. 6, Chap. 2.

    Google Scholar 

  18. Hyde, S. T.; Oguey, C. Eur. Phys. J. 2000, B16, 613.

    Google Scholar 

  19. Stone, A. J.; Wales, D. J. Chem. Phys. Lett. 1986, 128, 501.

    Google Scholar 

  20. Pearce, P. Structure in Nature is a Strategy for Design; MIT Press: Cambridge, MA, 1978.

    Google Scholar 

  21. Walter, A. Hyperspace 2000, 9, 22.

    Google Scholar 

  22. Brakke, K. A. Exp. Math. 1992, 1, 141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lord, E.A. Helical Structures: The Geometry of Protein Helices and Nanotubes. Structural Chemistry 13, 305–314 (2002). https://doi.org/10.1023/A:1015863923728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015863923728

Navigation