Skip to main content
Log in

Crystal structures and thermal analysis of nedocromil bivalent metal salt hydrates

  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two transition metal salts (manganese and cobalt) of the nedocromil were prepared, and their crystal structures were elucidated in an attempt to study the influence of the nature of the bivalent cation on the structure, water interactions, and molecular packing. Crystal data: nedocromil manganese pentahydrate (NMn), triclinic, P \(\overline 1\), a = 7.5351(4) Å, b = 10.3210(6) Å, c = 13.9664(8) Å, α = 86.640(1)°, β = 80.880(1)°, γ = 77.498(1)°, Z = 2; nedocromil cobalt heptahydrate (NCo), monoclinic. P21, a = 11.7847(2) Å, b = 7.0177(2) Å, c = 14.0700(1) Å, β = 105.343(1)°, Z = 2. Both Mn2+ and Co2+ have octahedral coordination, but the coordination environments of the cations and the bonding environments of the water molecules differ. In NMn, Mn2+ is octahedrally coordinated to two carboxylate oxygens, one in a syn orientation and the other in an anti orientation in a different asymmetric unit, and to four water molecules. In NCo, Co2+ is octahedrally coordinated to the carbonyl oxygen of the pyridone ring and to five water molecules. In NMn and NCo, the molecular conformations of the nedocromil anion are similar, with the carboxylate group on C2 almost in the same plane as the tricyclic ring, whereas the group on C8 is twisted out of the tricyclic plane. Thermal analytical data for NMn show that the water molecules in this hydrate are lost in two steps, of 4 mol and 1 mol of water, respectively. NCo also gave two dehydration steps but of about 6 mol of water and 1 mol of water, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cairns, H.; Cox, D.; Gould, K.J.; Ingall, A.H.; Suschitzky, J.L. J.Med.Chem. 1985, 28, 1832–1842.

    Google Scholar 

  2. Khankari, R.K. Physicochemical Characterization and Thermodynamic Properties of Nedocromil Salt Hydrates, Ph.D. Thesis; University of Minnesota: Minneapolis, MN, 1993; pp 40–148.

  3. Hickey, A.; Martonen, T. Pharm.Res. 1993, 10, 1–7.

    Google Scholar 

  4. Chan, H.; Gonda, I. J.Pharm.Sci. 1995, 84, 692–696.

    Google Scholar 

  5. Forbes, R.T.; York, P.; Fawcett, V.; Shields, L. Pharm.Res. 1992, 9, 1428–1435.

    Google Scholar 

  6. Hirsch, C.A.; Messenger, R.J.; Brannon, J.L. J.Pharm.Sci. 1978, 67, 231–236.

    Google Scholar 

  7. Khanhari,R.K.; Grant,D.J.W.Pharm.Res.1991,8(Suppl.),S103.

  8. Ojala, W.H.; Khankari, R.K.; Grant, D.J.W.; Gleason, W.B. J.Chem.Cryst. 1996, 26, 167–178.

    Google Scholar 

  9. Zhu, H.; Halfen, J.A.; Young, V.G., Jr; Padden, B.E.; Munson, E.R.; Menon, V.; Grant, D.J.W. J.Pharm.Sci. 1997, 86, 1439–1447.

    Google Scholar 

  10. Zhu, H.; Young, V.G., Jr; Grant, D.J.W. Int.J.Pharm. 2002, 232, 23–33.

    Google Scholar 

  11. Jones, P.G. Chem.Br. 1981, 17, 222–225.

    Google Scholar 

  12. SHELXTL-Plus V5.0; Siemems Industrial Automation: Madison, WI. 1996.

  13. Carrell, D.J.; Carrell, J.E.; Glusker, J.P. J.Am.Chem.Soc. 1988, 111, 8651–8656.

    Google Scholar 

  14. Peterson, M.R.; Csizmadia, I.G. J.Am.Chem.Soc. 1979, 101, 1076–1079.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H.(., Young, V.G. & Grant, D.J. Crystal structures and thermal analysis of nedocromil bivalent metal salt hydrates. Journal of Chemical Crystallography 31, 421–434 (2001). https://doi.org/10.1023/A:1015679519165

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015679519165

Navigation