Skip to main content
Log in

The Limit of Lebesgue Constants for Summation Methods of the Fourier―Legendre Series Defined by a Multiplier Function

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let C[-1,1] be the space of continuous functions f:[-1,1]→ℝ with the uniform norm, let Pk be the Legendre polynomials such that Pk (1)=1, and let J0 be the Bessel function of zero index. We consider sequences of linear operators (summation methods) Un:C [-1,1]→ C[-1,1] defined by a multiplier function ϕ as follows:

$$U_n f(y) = \int_{ - 1}^1 {f(x)} \sum\limits_{k = 0}^\infty {\varphi ({k \mathord{\left/ {\vphantom {k n}} \right. \kern-\nulldelimiterspace} n})} (k + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2})P_k (y)P_k (x)dx.$$

The values \({\mathfrak{L}}_n\), the norms of the operators Un , are called the Lebesgue constants of a summation method. The main result of this paper is the following statement. If a function ϕ is continuous on [\0,+∞),

$$\sum\limits_{k = 0}^\infty {\varphi ^2 } ({k \mathord{\left/ {\vphantom {k {n)(k + {1 \mathord{\left/ {\vphantom {1 {2) < \infty {\text{ }}for{\text{ }}each}}} \right. \kern-\nulldelimiterspace} {2) < \infty {\text{ }}for{\text{ }}each}}}}} \right. \kern-\nulldelimiterspace} {n)(k + {1 \mathord{\left/ {\vphantom {1 {2) < \infty {\text{ }}for{\text{ }}each}}} \right. \kern-\nulldelimiterspace} {2) < \infty {\text{ }}for{\text{ }}each}}}}{\text{ }}n \in \mathbb{N},{\text{ }}\int_{\text{0}}^\infty {\varphi ^{\text{2}} } (x)xdx < \infty ,$$
$$B\varphi (z) = z\int_0^\infty {\varphi (x)xJ_0 } (zx)dx$$

is the Fourier―Bessel transform of ϕ, and the function \(z^{q - 1} |B{\varphi (z)}|^q\) is summable on [\0,+∞) for some q>1, then

$${\mathop {\lim }\limits_{n \to \infty}} {\mathfrak{L}}_n = \int_0^\infty {|{\kern 1pt} B\varphi {\kern 1pt} |} .$$

Bibliography: 8 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Szegö, Orthogonal Polynomials [Russian translation], Moscow (1962).

  2. L. Fejér, “Ñber die Laplacesche Reihe,” Math. Ann., 67, 76–109 (1909).

    Google Scholar 

  3. G. I. Natanson, “On the norms of the Fejér-Legendre sums,” Vestn. S.-Peterb. Univ., Ser. 1, 25–34 (1996).

  4. G. Gasper, “Banach algebras for Jacobi series and positivity of a kernel,” Ann. Math., 95, 261–280 (1972).

    Google Scholar 

  5. R. Askey and S. Weinger, “A convolution structure for Jacobi series,” Am. J. Math., 91, 463–485 (1969).

    Google Scholar 

  6. L. V. Florinskaya and V. P. Khavin, Theory of Measures and Integrals. Issue 2. Integrals [in Russian], Leningrad (1975).

  7. N. I. Akhiezer, Lectures on Approximation Theory [in Russian], Moscow (1965).

  8. P. P. Zabrejko, A. I. Koshelev, M. A. Krasnosel'skii, S. G. Mikhlin, L. S. Rakovshik, and V. Ya. Stetsenko, Integral Equations [in Russian], Moscow (1968).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinogradov, O.L. The Limit of Lebesgue Constants for Summation Methods of the Fourier―Legendre Series Defined by a Multiplier Function. Journal of Mathematical Sciences 110, 2944–2954 (2002). https://doi.org/10.1023/A:1015383103199

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015383103199

Keywords

Navigation