Skip to main content
Log in

Catalytic Conversion of N2O to N2 over Metal-Based Catalysts in the Presence of Hydrocarbons and Oxygen

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic conversion of N2O to N2 in the presence or the absence of propene and oxygen was studied. The catalysts examined in this work were synthesized impregnating metals (Rh, Ru, Pd, Co, Cu, Fe, In) on different supports (Al2O3, SiO2, TiO2, ZrO2 and calcined hydrotalcite MgAl2(OH)8·H2O). The experimental results varied both with the type of the active site and with the type of the support. Rh and Ru impregnated on γ-alumina exhibited the highest activity. The performance of the above most promising catalysts was studied using various hydrocarbons (CH4, C3H6, C3H8) as reducing agents. These experimental results showed that the type of reducing agent does not affect the reaction yield. The temperature where complete conversion of N2O to N2 was measured was independent of the reductant type. The activity of the most active catalysts was also measured in the presence of SO2 and H2O in the feed. A shift of the N2O conversion versus temperature curve to higher temperatures was observed when SO2 and H2O were added, separately or simultaneously, to the feed. The inhibition caused by SO2 was attributed to the formation of sulfates and that caused by water to the competitive chemisorption of H2O and N2O on the same active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Kapteijn, J. Rodriguez-Mirasol and J.A. Moulijn, Appl. Catal. B 9 (1996) 25.

    Google Scholar 

  2. K. Yamada, C. Pophal and K. Segawa, Micropor. Mesopor. Mater. 21 (1998) 549.

    Google Scholar 

  3. G. Centi and F. Vazzana, Catal. Today 53 (1999) 683.

    Google Scholar 

  4. K. Yamada, S. Kondo and K. Segawa, Micropor. Mesopor. Mater. 35–36 (2000) 227.

    Google Scholar 

  5. C. Pophal, T. Yogo, K. Yamada and K. Segawa, Appl. Catal. 16 (1998) 177.

    Google Scholar 

  6. J.H. Holles, M.A. Switzer and R.J. Davis, J. Catal. 190 (2000) 247.

    Google Scholar 

  7. A. Satsuma, H. Maeshima, K. Watanabe, K. Suzuki and T. Hattori, Catal. Today 63 (2000) 347.

    Google Scholar 

  8. K. Aika and K. Oshihara, Catal. Today 29 (1996) 123.

    Google Scholar 

  9. M. Mauvezin, G. Delahay, B. Coq and S. Kieger, Appl. Catal. B 23 (1999) L79.

    Google Scholar 

  10. J. Oi, A. Obuchi, A. Ogata, G.R. Bamwenda, R. Tanaka, T. Hibino and S. Kushiyama, Appl. Catal. B 13 (1997) 197.

    Google Scholar 

  11. S. Kannan, Appl. Clay Sci. 13 (1998) 347.

    Google Scholar 

  12. J.N. Armor, T.A. Braymer, T.S. Farris, Y. Li, F.P. Petrocelli, E.L. Weist, S. Kannan and C.S. Swamy, Appl. Catal. B 7 (1996) 397.

    Google Scholar 

  13. H.C. Zeng and X.Y. Pang, Appl. Catal. B 13 (1997) 113.

    Google Scholar 

  14. G. Centi, A. Galli, B. Montanari, S. Perathoner and A. Vaccari, Catal. Today 35 (1997) 113.

    Google Scholar 

  15. Y.-F. Chang, J.G. McCarty, E.D. Wachsman and V.L. Wong, Appl. Catal. B 4 (1994) 283.

    Google Scholar 

  16. Y.-F. Chang, J.G. McCarty and E.D. Wachsman, Appl. Catal. B 6 (1995) 21.

    Google Scholar 

  17. T.W. Dann, K.H. Schulz, M. Mann and M. Collings, Appl. Catal. B 6 (1995) 1.

    Google Scholar 

  18. J. Oi, A. Obuchi, G.R. Bamwenda, A. Ogata, H. Yagita, S. Kushiyama and K. Mizuno, Appl. Catal. B 12 (1997) 277.

    Google Scholar 

  19. X.F. Wang and H.C. Zeng, Appl. Catal. B 17 (1998) 89.

    Google Scholar 

  20. R.S. da Cruz, A.J.S. Mascarenhas and H.M.C. Andrade, Appl. Catal. B 18 (1998) 223.

    Google Scholar 

  21. K. Yuzaki, T. Yarimizu, K. Aoyagi, S. Ito and K. Kunimori, Catal. Today 45 (1998) 129.

    Google Scholar 

  22. S. Tanaka, K. Yuzaki, S. Ito, H. Uetsuka, S. Kameoka and K. Kunimori, Catal. Today 63 (2000) 413.

    Google Scholar 

  23. S. Tanaka, K. Yuzaki, S. Ito, S. Kameoka and K. Kunimori, J. Catal. 200 (2001) 203.

    Google Scholar 

  24. J. Pereuz-Ramirez, J. Overeijnden, F. Kapteijn and J.A. Moulijn, Appl. Catal. B 23 (1999) 59.

    Google Scholar 

  25. G.D. Lionta, S.C. Christoforou, E.A. Efthimiadis and I.A. Vasalos, Ind. Eng. Chem. Res. 35 (1996) 2508.

    Google Scholar 

  26. E.A. Efthimiadis, G.D. Lionta, S.C. Christoforou and I.A. Vasalos, Catal. Today 40 (1998) 15.

    Google Scholar 

  27. R. Burch and S. Scire, Appl. Catal. B 3 (1994) 295.

    Google Scholar 

  28. M.D. Amiridis, T. Zhang and R.J. Farrauto, Appl. Catal. B 10 (1996) 203.

    Google Scholar 

  29. K. Yuzaki, T. Yarimizu, K. Aoyagi, S. Ito and K. Kunimori, Catal. Today 45 (1998) 129.

    Google Scholar 

  30. Y. Li and J.N. Armor, Appl. Catal. B 3 (1993) 55.

    Google Scholar 

  31. E.A. Efthimiadis, S.C. Christoforou, A.A. Nikolopoulos and I.A. Vasalos, Appl. Catal. B 22 (1999) 91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christoforou, S., Efthimiadis, E. & Vasalos, I. Catalytic Conversion of N2O to N2 over Metal-Based Catalysts in the Presence of Hydrocarbons and Oxygen. Catalysis Letters 79, 137–147 (2002). https://doi.org/10.1023/A:1015360425678

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015360425678

Navigation