Skip to main content
Log in

Extraction Preconcentration of Uranium and Thorium Traces in the Analysis of Bottom Sediments by Inductively Coupled Plasma Mass Spectrometry

  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A procedure was developed for determining trace amounts of uranium and thorium isotopes in bottom sediments from Lake Baikal. This procedure involves sample decomposition, the coextraction of uranium and thorium with trioctylphosphine oxide, the quantitative back extraction after diluting the extract with caprylic acid, and the ICP MS analysis of the back extract. The procedure was verified by analyzing a BIL-1 Lake Baikal bottom silt standard reference material using the developed procedure and independent methods. The detection limits of abundant uranium and thorium isotopes are restricted by blank measures and equal to 1 × 10–7 mass %. The detection limits for234U and 230Th are 4 × 10–10 and 6 × 10–10 mass %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gavshin, V.M., Gol'dberg, E.L., Mel'gunov, M.S., et al., Problemy rekonstruktsii klimata i prirodnoi sredy golotsena i pleistotsena Sibiri (Problems of the Reconstruction of the Climate and Environment of the Holocene and Pleistocene in the Siberia), Novosibirsk: Inst. Arkheol. Etnogr., 1998, p. 78.

    Google Scholar 

  2. Chen, J.H., Edwards, R.L., and Wasserburg, G.J., Uranium-Series Disequilibrium Applications to Earth, Marine and Environmental Sciences, Ivanovich, M. and Harmon, R.S., Eds., Oxford: Claredron, 1992, p. 125.

    Google Scholar 

  3. Becker, J.S. and Dietze, H.J., J. Anal. At. Spectrom., 1997, vol. 12, p. 881.

    Google Scholar 

  4. Boomer, D.W. and Powell, M.J., Anal. Chem., 1987, vol. 59, p. 2810.

    Google Scholar 

  5. Strekopytov, S.I. and Dubinin, A.V., Zh. Anal. Khim., 1997, vol. 53, no. 12, p. 1296.

    Google Scholar 

  6. Martin, R., Sanchez, D.M., and Gutierrez, A.M., Talanta, 1998, vol. 46, p. 1115.

    Google Scholar 

  7. Pin, C. and Zalduegui, I.F.S., Anal. Chim. Acta, 1997, vol. 339, p. 79.

    Google Scholar 

  8. Truscott, J.B., Bromley, L., Jones, P., et al., J. Anal. At. Spectrom., 1999, vol. 14, p. 627.

    Google Scholar 

  9. Hollenbach, M., Grohs, J., Mamich, S., and Kroft, M., J. Anal. At. Spectrom., 1994, vol. 9, p. 927.

    Google Scholar 

  10. Hinrichs, J. and Schnetger, B., Analyst (Cambridge, U.K.), 1999, vol. 124, p. 927.

    Google Scholar 

  11. Savvin, S.B., Arsenazo III (Arsenazo III), Moscow: Atomizdat, 1966.

    Google Scholar 

  12. Ryabchikov, D.I. and Senyavin, M.M., Analiticheskaya khimiya urana (The Analytical Chemistry of Uranium), Moscow: Akad. Nauk SSSR, 1962.

    Google Scholar 

  13. Ryabchikov, D.I. and Gol'braikh, E.K., Analiticheskaya khimiya toriya (The Analytical Chemistry of Thorium), Moscow: Akad. Nauk SSSR, 1960.

    Google Scholar 

  14. Gavshin, V.M., Arkhipov S.A., Bobrov N.S., Mel'gunov M.S., Makarova I.V., et al., Geol. Geofiz., 1998, vol. 39, no. 8, p. 1045.

    Google Scholar 

  15. Prohaska, T., Hann, S., Latkovsky, C., and Stingeder, G., J. Anal. At. Spectrom., 1999, vol. 14, p. 1.

    Google Scholar 

  16. Navez, J., Mus. Roy. Afr. Centr., Tervuren Belg., Dept. Geol. Min., Rapp. Ann. 1993–1994, 1995, p. 139.

  17. Stolyarova, I.V. and Orlova, V.A., Zh. Anal. Khim., 1994, vol. 49, no. 8, p. 817.

    Google Scholar 

  18. Nikolotova, Z.I. and Kartashova, N.A., Spravochnik po ekstraktsii (Handbook on Extraction Processes), vol. 1, Moscow: Atomizdat, 1976.

    Google Scholar 

  19. Karalova, Z.K., Zh. Anal. Khim., 1973, vol. 28, no. 7, p. 1389.

    Google Scholar 

  20. Ross, W.J. and White, J.C., Anal. Chem., 1959, vol. 31, p. 1847.

    Google Scholar 

  21. Degetto, S., Faggiu, M., Moresco, A., and Baracco, L., Kagaku To Kogyo (Osaka), 1983, vol. 56, p. 904.

    Google Scholar 

  22. Guyon, J.C. and Madison, B., Microchim. Acta, 1975 (I), p. 133.

    Google Scholar 

  23. Pollock, E.N., Anal. Chim. Acta, 1977, vol. 88, p. 399.

    Google Scholar 

  24. Baltisberger, R.J., Anal. Chem., 1964, vol. 36, p. 2369.

    Google Scholar 

  25. Horton, C.A. and White, J.C., Anal. Chem., 1958, vol. 30, p. 1179.

    Google Scholar 

  26. Ischinose, N.F, Fresenius' Z. Anal. Chem., 1991, vol. 340, p. 11.

    Google Scholar 

  27. Ghalsasi, Y.V. and Shinde, V.M., J. Radioanal. Nucl. Chem., 1998, vol. 231, p. 133.

    Google Scholar 

  28. Drozdova, M.K., Cand. Sci. (Chem.) Dissertation, Novosibirsk, 1980.

  29. Bailey, E.H., Kemp, A.J., and Ragnarsdottir, K.V., J. Anal. At. Spectrom., 1993, vol. 8, p. 7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torgov, V.G., Demidova, M.G., Saprykin, A.I. et al. Extraction Preconcentration of Uranium and Thorium Traces in the Analysis of Bottom Sediments by Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Chemistry 57, 303–310 (2002). https://doi.org/10.1023/A:1014942112864

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014942112864

Keywords

Navigation