Skip to main content
Log in

Wolff's Inequality for Radially Nonincreasing Kernels and Applications to Trace Inequalities

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We extend Th. Wolff's inequality to a general class of radially decreasing convolution kernels. As an application we obtain characterizations of nonnegative Borel measures μ on R n such that the trace inequality \(\parallel {\kern 1pt} T_K f{\kern 1pt} \parallel _{L^q ({\text{d}}\mu )} \;\; \leqslant \;\;C\parallel {\kern 1pt} f{\kern 1pt} \parallel _{L^p ({\text{d}}x)} \) holds for every f in L p(dx).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R.: 'Traces of potentials arising from translation invariant operators', Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1971), 203–217.

    Google Scholar 

  2. Adams, D.R.: 'Weighted nonlinear potential theory', Trans. Amer. Math. Soc. 297 (1986), 73–94.

    Google Scholar 

  3. Aikawa, H. and Essén, M.: Potential Theory-Selected Topics, Lecture Notes in Math. 1633, Springer, 1996.

  4. Adams, D.R. and Hedberg, L.I.: Function Spaces and Potential Theory, Springer-Verlag, New York, 1996.

    Google Scholar 

  5. Cascante, C. and Ortega, J.M.: 'Norm inequalities for potential-type operators in homogeneous spaces', to appear in Math. Nachr.

  6. Cascante, C., Ortega, J.M., and Verbitsky, I.E.: 'Trace inequalities of Sobolev type in the upper triangle case', Proc. London Math. Soc. 80 (2000), 391–414.

    Google Scholar 

  7. Fefferman, R.: 'Strong differentiation with respect to measures', Amer. J. Math. 103 (1981), 33–40.

    Google Scholar 

  8. Fefferman, C. and Stein, E.M.: 'Some maximal inequalities', Amer. J. Math. 93 (1971), 107–115.

    Google Scholar 

  9. Hedberg, L.I. and Wolff, Th.H.: 'Thin sets in nonlinear potential theory', Ann. Inst. Fourier (Grenoble) 33 (1983), 161–187.

    Google Scholar 

  10. Kalton, N.J. and Verbitsky, I.E.: 'Nonlinear equations and weighted norm inequalities', Trans. Amer. Math. Soc. 351 (1999), 3441–3497.

    Google Scholar 

  11. Kerman, R. and Sawyer, E.: 'The trace inequality and eigenvalue estimates for Schrödinger operators', Ann. Inst. Fourier (Grenoble) 36 (1986), 207–228.

    Google Scholar 

  12. Maz'ya, V.G.: Sobolev Spaces, Springer-Verlag, New York, 1985.

    Google Scholar 

  13. Maz'ya, V.G. and Netrusov, Y.: 'Some counterexamples for the theory of Sobolev spaces on bad domains', Potential Anal. 4 (1995), 47–65.

    Google Scholar 

  14. Muckenhoupt, B. and Wheeden, R.: 'Weighted norm inequalities for fractional integrals', Trans. Amer. Math. Soc. 192 (1974), 261–274.

    Google Scholar 

  15. Sawyer, E.T.: 'A characterization of a two weight norm inequality for maximal operators', Studia Math. 75 (1982), 1–11.

    Google Scholar 

  16. Sawyer, E.T. and Wheeden, R.L.: 'Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces', Amer. J. Math. 114 (1992), 813–874.

    Google Scholar 

  17. Sawyer, E.T., Wheeden, R.L., and Zhao, S.: 'Weighted norm inequalities for operators of potential type and fractional maximal functions', Potential Anal. 5 (1996), 523–580.

    Google Scholar 

  18. Verbitsky, I.E.: 'Nonlinear potentials and trace inequalities', in: Operator Theory: Advances and Applications 110, 1999, pp. 323–343.

    Google Scholar 

  19. Verbitsky, I.E. and Wheeden, R.L.: 'Weighted norm inequalities for integral operators', Trans. Amer. Math. Soc. 350 (1998), 3371–3391.

    Google Scholar 

  20. Wheeden, R.L. and Zhao, S.: 'Weak type estimates for operators of potential type', Studia Math. 119 (1996), 149–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cascante, C., Ortega, J.M. & Verbitsky, I.E. Wolff's Inequality for Radially Nonincreasing Kernels and Applications to Trace Inequalities. Potential Analysis 16, 347–372 (2002). https://doi.org/10.1023/A:1014845728367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014845728367

Navigation