Skip to main content
Log in

Utilization of Energy Nutrients by Cerebellar Slices

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We performed an ontogenetic study about the utilization of glycine, glutamine, β-hydroxybutyrate and glycerol as energy nutrients by rat cerebellum slices. Production of CO2 from glycerol and glutamine increased with the animals' age and glutamine was the most used nutrient for CO2 production. In adult age, glutamine oxidation to CO2 was 15 to 35 times higher than all other nutrients studied. CO2 production from glycine decreased markedly with age and 10 day-old rats showed an oxidation 7.5 times higher than that of adult rats. At fetal age and at 10 postnatal days, glycine oxidation to CO2 was only 2 times lower than glutamine oxidation to CO2. Lipid synthesis from β-hydroxybutyrate was highest in adult rats. We did not observe any difference in the utilization of β-hydroxybutyrate between slices of cerebral cortex and cerebellum at the ages of 10 days and adult. The main nutrients used for lipid synthesis were glycerol and β-hydroxybutyrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cahill, G. F. Jr., Herrera, M. G., Morgan, A. P., Soeldner, J., Steinke, J., Levy, P. L., Richard, G. A. Jr., and Kipnis, D. M. 1966. Hormone-fuel interrelationships during fasting. J. Clin. Invest. 45:1751–1769.

    Google Scholar 

  2. Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G., and Cahill, G. F., Jr. 1967. Brain metabolism during fasting. J. Clin. Invest. 46:1589–1595.

    Google Scholar 

  3. McKenna, M. C., Bezold, L. I., Kimatian, S. J., and Tildon, J.-T. 1986. Competition of glycerol with other oxidizable substrates in rat brain. Biochem. J. 237:47–51.

    Google Scholar 

  4. Vicario, C., Arizmendi, C., Malloch, G., Clark, J. B., and Medina J. M. 1991. Lactate utilization by isolated cells from early neonatal rat brain. J. Neurochem. 57:1700–1707.

    Google Scholar 

  5. Tildon, J. T. and Roeder, L. M. 1984. Transport of 3–hydroxyl [3–14C]butyrate. J. Neurochem. 42:1069–1076.

    Google Scholar 

  6. Bixel, G., Dringen, R., Wiesinger, H., Stock, W., and Hamprecht, B. 1993. Consumption of branched-chain amino acids and glycine by astroglia-rich rat brain cell cultures. Biol. Chemistry Hoppe-Seyler 347:915.

    Google Scholar 

  7. Bueno, D., Azzolin, I. R., and Perry, M. L. S. 1994. Ontogenetic study of glucose and lactate utilization by rat cerebellum slices. Med. Sci. Res. 22:631–632.

    Google Scholar 

  8. McIlwain, H. 1953. Glucose level, metabolism and response to electrical impulses in cerebral tissues from man and laboratory animals. Biochem. J. 55:618–624.

    Google Scholar 

  9. Larrabee, M. G. 1995. Lactate metabolism and its effects on glucose metabolism in an excised neural tissue. J. Neurochem. 64:1734–17741.

    Google Scholar 

  10. Schurr, A., West, C. A., and Rigor B. M. 1988. Lactate-Supported Synaptic Function in the Rat Hippocampal Slice Preparation. Science 240:1326–1329.

    Google Scholar 

  11. Dringen, R., Gebhardt, R., and Hamprecht, B. 1993. Glycogen in astrocytes: Possible function as lactate supply for neighboring cells. Brain Res. 623:208–214.

    Google Scholar 

  12. Poitry-Yamate, C. L., Poitry, S., and Tsacopoulos, M. 1995. Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J. Neurosci. 15:5179–5191.

    Google Scholar 

  13. Weber, M. H., Oliveira, K. R., Schweigert, I. D., Rotta, L. N., Souza, K. B., Souza, D. O., and Perry, M. L. S. 2001. Study of Developmental Changes on Hexoses Metabolism in Rat Cerebral Cortex. Neurochem. Res. 26:161–166.

    Google Scholar 

  14. Dunlop, D. S., Van Elden, W., and Lajtha, A. 1975. Optimal conditions for protein synthesis in incubated slices of brain rat. Brain Res. 99:303–318.

    Google Scholar 

  15. Patel, M. S. and Owen, O. E. 1978. The Metabolism of Leucine by Developing Rat Brain: Effect of leucine and 2–Oxo-4–Methylvalerate on Lipid Synthesis from Glucose and Ketone Bodies. J. Neurochem. 30:775–782.

    Google Scholar 

  16. Cremer, J. E., Braun, I. D., and Oldendorf, W. H. 1976. Changes during development in transport processes of the blood brain barrier. Biochim. Biophys. Acta 448:633–637.

    Google Scholar 

  17. Tsacopoulos, M. and Magistretti, P. J. 1996. Metabolic coupling between glia and neurons. J. Neurosci. 16:877–885.

    Google Scholar 

  18. Schurr, A., Payne, R. S., Miller, J. J., and Rigor, B. M. 1997. Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J. Neurochem. 69:423–426.

    Google Scholar 

  19. Schurr, A., Payne, R.S., Miller, J. J., and Rigor, B. M. 1997. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation; an in vitro study. Brain Res. 744:105–111.

    Google Scholar 

  20. Crone, C. 1965. The permeability of brain capillaries to nonelectrolytes. Act. Phys. Scan. 64:407–417.

    Google Scholar 

  21. Sato, K., Yoshida, S., Fujiwara, K., Tada, K., and Tohyama, M. 1991. Glycine cleavage system in astrocytes. Brain Res. 567:64–70.

    Google Scholar 

  22. Jenkins, B. T. and Hajra, A. K. 1976. Glycerol kinase and Dihydroxyacetona kinase in rat brain. J. Neurochem. 26:377–385.

    Google Scholar 

  23. Booth, R. F. G., Patel, T. B., and Clark, J. B. 1980. The development of enzymes of energy metabolism in the brain of precocial (guinea pig) and non-precocial (rat) species. J. Neurochem. 34:17–25.

    Google Scholar 

  24. Buckley, B. M. and Williamson, D. H. 1973. Acetoacetate and brain lipogenesis. Developmental pattern of acetoacetyl-coenzyme. A synthase in the soluble fraction of rat brain. Biochem. Journal 132:653–656.

    Google Scholar 

  25. Girard, J., Ferré, P., Pégorier, J. P., and Duée, P. H. 1992. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol. Rev. 72:507–562.

    Google Scholar 

  26. Prip-Buus, C., Pégorier, J. P., Duée, P. H., Kohl, C., and Girard, J. 1990. Evidence that the sensitivity of carnitine palmitoyltransferase I to malonyl-CoA inhibition is the major site of regulation of hepatic fatty acid oxidation in the fetal and newborn rabbit. Perinatal development and effects of pancreatic hormones in cultured rabbit hepatocytes. Biochem. J. 269:409–415.

    Google Scholar 

  27. Roeder, L. M., Tildon, J. T., and Stevenson, J. H. 1984. Competition among oxizidable substrates in brains of young and adult rats. Biochem. J. 219:125–130.

    Google Scholar 

  28. Fagundes, I., Rotta, L. N., Schweigert, I. D., Oliveira, K., Krüger, A. H., Souza, D. O., and Perry, M. L. S. 2001. Glycine, serine, and leucine metabolism in different regions of central nervous system. Neurochem. Res. 26:245–249.

    Google Scholar 

  29. Sonnenwald, U., Westergaard, N., Petersen, S. B., Unsgard, G., and Schousboe, A. 1993a. Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: Incorporation of more label into lactate than into glutamine demonstrates the importance of the TCA cycle. J. Neurochem. 61:1179–1182.

    Google Scholar 

  30. McKenna, M. C., Sonnewald, U., Huang, X., Stevenson, J., and Zielke, H. R. 1996. Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem. 66:386–393.

    Google Scholar 

  31. Bittar, P. G., Charnay, Y., Pellerin, L., Bouras, C., and Magistretti. 1996. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J. Cereb. Blood Flow Metab. 16:962–969.

    Google Scholar 

  32. Kanamori, K., Ross, B. D., and Kondrat, R. W. 1998. Rate of glutamate synthesis from leucine in rat brain measured in vivo by 15N NMR. J. Neurochem. 70:1304–1315.

    Google Scholar 

  33. Cooper, A. J. L., McDonald, J. M., Gelbard, A. S., Gledhill, R. F., and Duffy T. E. 1979. The metabolic fate of 13N-labelled ammonia in rat brain. J. Biol. Chem. 254:4982–4992.

    Google Scholar 

  34. Vitiello, F. and Gombos G. Cerebellar Development and Nutrition; Current Topics in Nutrition and Disease, Volume 16 Basic and Clinical Aspects of Nutrition and Brain Development, pages 99–130. 1987 Alan R. Liss, Inc., New York.

    Google Scholar 

  35. Nehlig, A., Boyet, S., and Vasconcelos, A. 1991. Autoradiographic measurement of local cerebral β-hydroxybutyrate uptake in the rat during post-natal development. Neuroscience 40:871–878.

    Google Scholar 

  36. Hawkins, R. A. and Biebuyck, J. F. 1979. Ketone bodies are selectively used by individual brain regions. Science 205: 325–327.

    Google Scholar 

  37. Bommacanti, R. K., Beavan, M., Ng, K., and Jois, M. 1996. Oxidation of glycine by chicken astrocytes in primary culture. J. Neurochem. 66(Suppl. 2):S90A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotta, L.N., Valle, S.C., Schweigert, I. et al. Utilization of Energy Nutrients by Cerebellar Slices. Neurochem Res 27, 201–206 (2002). https://doi.org/10.1023/A:1014828419900

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014828419900

Navigation