Skip to main content
Log in

The Effect of Temperature and Pressure on the Mechanical Properties of Thermo- and/or Piezorheologically Simple Polymeric Materials in Thermodynamic Equilibrium – A Critical Review

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The mechanical properties of polymeric materials quite generally dependon time, i.e., on whether they are deformed rapidly or slowly. The timedependence is often remarkably large. The complete description of themechanical properties of a polymeric material commonly requires thatthey be traced through 10, 15, or even 20 decades of time. The class ofpolymeric materials referred to as thermorheologically and/orpiezorheologically simple materials allows use of the superposition ofthe effects of time and temperature and/or time and pressure in suchmaterials as a convenient means for extending the experimental timescale.

This paper presents a critical review of models proposed todescribe the effect of temperature and/or pressure on time-dependentthermorheologically and/or piezorheologically simple polymericmaterials. The emphasis here is on the theoretical aspects, althoughexperimental results are used as illustrations wherever appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, G. and Gibbs, J.H., 'On the temperature dependence of cooperative relaxation properties in glass-forming liquids', J. Chem. Phys. 43, 1965, 139-146.

    Google Scholar 

  • Baumgaertel, M. and Winter, H.H., 'Determination of discrete relaxation and retardation time spectra from dynamic mechanical data', Rheol. Acta 28, 1989, 511-519.

    Google Scholar 

  • Bestul, A.B. and Chang, S.S., 'Excess entropy at glass transformation', J. Chem. Phys. 40, 1964, 3731-3733.

    Google Scholar 

  • Bianchi, U., 'Pressure effects on glass transition in polymers', J. Phys. Chem. 69, 1965, 1497-1504.

    Google Scholar 

  • Boldizar, A., Kubát, J. and Rigdahl, M., 'Influence of mold filling rate and gate geometry on the modulus of high pressure injection-moulded polyethylene', J. Appl. Polym. Sci. 39, 1990, 63-71.

    Google Scholar 

  • Bridgman, P.W., The Physics of High Pressure, G. Bell and Sons, London, 1949.

    Google Scholar 

  • Brinson, L.C. and Knauss,W.G., 'Thermorheologically complex behavior of multi-phase viscoelastic materials', J. Mech. Phys. Solids 39(7), 1991, 859-880.

    Google Scholar 

  • Brinson, L.C. and Knauss,W.G., 'Finite element analysis of multi-phase viscoelastic solids', J. Appl. Mech. 59, 1992, 730-737.

    Google Scholar 

  • Bueche, F., 'Rate and pressure effects in polymers and other glass-forming substances', J. Chem. Phys. 36, 1962, 2940-2946.

    Google Scholar 

  • Caruthers, J.M. and Cohen, R.E., 'Consequences of thermorheological complexity in viscoelastic materials', Rheol. Acta 19, 1980, 606-613.

    Google Scholar 

  • Chang, S.S., Bestul, A.B. and Horman, J.A., 'Critical configurational entropy at glass transformation', in Proceedings of the VII International Congress on Glass, Brussels, 1965.

  • Cohen, R.E. and Tschoegl, N.W., 'Comparison of the dynamic mechanical properties of two SBS triblock copolymers with 1,2-and 1,4-polybutadiene central blocks', Trans. Soc. Rheol. 20, 1976, 153-169.

    Google Scholar 

  • Curro, J.G., Lagasse, R.R. and Simha, R., 'Use of a theoretical equation of state to interpret timedependent free volume in polymer glasses', J. Appl. Phys. 52, 1981, 5892.

    Google Scholar 

  • Deng, T.H. and Knauss, W.G., 'The temperature and frequency dependence of the bulk compliance of Poly(Vinyl Acetate). A re-examination', Mech. Time-Dependent. Mater. 1, 1997, 33-49.

    Google Scholar 

  • DiMarzio, E.A. and Gibbs, J.H., 'Chain stiffness and the lattice theory of polymer phases', J. Chem. Phys. 28, 1958, 807-813.

    Google Scholar 

  • DiMarzio, E.A. and Gibbs, J.H., 'Glass temperature of copolymers', J. Polym. Sci. 40, 1959, 121-131.

    Google Scholar 

  • DiMarzio, E.A. and Gibbs, J.H., 'Molecular interpretation of glass temperature depression by plasticizers', J. Polym. Sci. A1, 1963, 1417-1428.

    Google Scholar 

  • DiMarzio, E.A. and Gibbs, J.H., 'On the second order transition of a rubber', J. Res. Nat. Bur. Stand. A68, 1964, 611-617.

    Google Scholar 

  • DiMarzio, E.A., Gibbs, J.H., Fleming III, P.D. and Sanchez, I.C., 'Effects of pressure on the equilibrium properties of glass-forming polymers', Macromolecules 9, 1976, 763-771.

    Google Scholar 

  • Doolittle, A.K. and Doolittle, D.B., 'Studies in Newtonian flow. Further verification of the free-space viscosity equation', J. Appl. Phys. 28, 1957, 901-905.

    Google Scholar 

  • Duperray, B. and Leblanc, J.L., 'The time-temperature superposition principle as applied to filled elastomers', Kautschuck + Gummi · Kunststoffe 35(4), 1982, 298-307.

    Google Scholar 

  • Eisenberg, A. and Saito, S., 'Possible experimental equivalence of the Gibbs-DiMarzio and free volume theories of the glass transition', J. Chem. Phys. 45, 1966, 1673-1678.

    Google Scholar 

  • Emri, I. and Tschoegl, N.W., 'Generating line spectra from experimental responses. Part I: Relaxation modulus and creep compliance', Rheol. Acta 32, 1993, 311-321.

    Google Scholar 

  • Emri, I. and Tschoegl, N.W., 'Generating line spectra from experimental responses. Part IV: Application to experimental data', Rheol. Acta 33, 1994, 60-70.

    Google Scholar 

  • Emri, I. and Tschoegl, N.W., 'An iterative computer algorithm for generating line spectra from linear viscoelastic response functions', Internat. J. Polym. Mater. 40, 1998, 55-79.

    Google Scholar 

  • Emri, I., Knauss,W.G. and Tschoegl, N.W., 'Non-equilibrium time-dependent behavior of polymeric materials', 2002, in preparation.

  • Ferry, J.D., Viscoelastic Properties of Polymers, 3rd edn., Wiley and Sons, New York, 1980.

    Google Scholar 

  • Ferry, J.D. and Stratton, R.A., 'The free volume interpretation of the dependence of viscosities and viscoelastic relaxation times on concentration, pressure, and tensile strain', Kolloid-Z. 171, 1960, 107-111.

    Google Scholar 

  • Fesko, D.G. and Tschoegl, N.W., 'Time-temperature superposition in thermorheologically complex materials', J. Polym. Sci., Part C, Symposia 35, 1971, 51-69.

    Google Scholar 

  • Fesko, D.G. and Tschoegl, N.W., 'Time-temperature superposition in styrene/butadiene/styrene block copolymers', Internat. J. Polym. Mater. 3, 1974, 51-79.

    Google Scholar 

  • Fillers, R.W. and Tschoegl, N.W., 'The effect of pressure on the mechanical properties of polymers', Trans. Soc. Rheol. 21, 1977, 51-100.

    Google Scholar 

  • Freeman, B.D., Bokobza, L. and Monnerie, L., 'The effect of hydrostatic pressure on local polymer dynamics in polyisoprene', Polymer 31, 1990, 1045-1050.

    Google Scholar 

  • Gee, G., 'The thermodynamic analysis of the effect of pressure on the glass temperature of polystyrene', Polymer 7, 1966, 177-191.

    Google Scholar 

  • Gibbs, J.A., Modern Aspects of the Vitreous State, Butterworths, London, 1960.

    Google Scholar 

  • Gibbs, J.A. and DiMarzio, E.A., 'Nature of the glass transition and the glassy state', J. Chem. Phys. 28, 1958, 373-383.

    Google Scholar 

  • Goldstein, M., 'Some thermodynamic aspects of the glass transition: Free volume, entropy, and enthalpy theories', J. Chem. Phys. 39, 1963, 3369-3374.

    Google Scholar 

  • Gross, B., Mathematical Structure of the Theories of Viscoelasticity, Hermann et Cie., Paris, 1968.

    Google Scholar 

  • Gross, B., 'Time-temperature superposition principle in relaxation theory', J. Appl. Phys. 40, 1969, 3397.

    Google Scholar 

  • Havlí?ek, I., Ilavský, M. and Hrouz, J., 'Effect of pressure on the cooperative relaxation properties and glass transition temperature of amorphous polymers', J. Macromol. Sci. Phys. B21, 1982, 425-441.

    Google Scholar 

  • Hutchinson, J.M. and Kovacs, A.J., 'A simple phenomenological approach to the thermal behavior of glasses during uniform heating or cooling', J. Polym. Sci.: Polym. Phys. Ed. 14, 1976, 1575-1590.

    Google Scholar 

  • Kaplan, D. and Tschoegl, N.W., 'Time-temperature superposition in two-phase polyblends', Polym. Engrg. Sci. 14, 1974, 43-49.

    Google Scholar 

  • Kauzmann, W., 'Dielectric relaxation as a chemical rate process', Rev. Mod. Phys. 14, 1942, 12-44.

    Google Scholar 

  • Knauss, W.G. and Zhu,W.D., 'Nonlinearly viscoelastic behavior of polycarbonate. I. Response under pure shear', Mech. Time-Dependent Mater., 2002, to appear.

  • Kovacs, A.J., 'Transition vitreuse dans les polymères amorphes. Etude phénomenologique', Adv. Polym. Sci. 3, 1964, 394-507.

    Google Scholar 

  • Kralj, A., Prodan, T. and Emri, I., 'Effect of pressure and temperature on the mechanical properties of polymers', J. Rheol., 2001, to appear.

  • Matheson, A.J., 'Role of free-volume in the pressure dependence of the viscosity of liquids', J. Chem. Phys. 44, 1966, 695-699.

    Google Scholar 

  • McCrum, N.G., 'The kinetics of the relaxation in an amorphous polymer at temperatures close to the glass transition', Polymer 25, 1984, 309-317.

    Google Scholar 

  • McCrum, N.G. and Morris, E.L., 'On measurement of activation energies for creep and stress relaxation', Proc. Roy. Soc. A281, 1964, 258-273.

    Google Scholar 

  • McCrum, N.G., Read, B.E. and Williams, G., Anelastic and Dielectric Effects in Polymeric Solids, Wiley and Sons, New York, 1967.

    Google Scholar 

  • McKinney, J.E. and Belcher, H.V., 'Dynamic compressibility of poly(vinyl acetate) and its relation to free volume', J. Res. Nat. Bur. Stand. 67A, 1963, 43-53.

    Google Scholar 

  • McLaughlin, J.R. and Tobolsky, A., 'The viscoelastic behavior of polymethyl methacrylate', J. Colloid Sci. 7, 1952, 555-568.

    Google Scholar 

  • Moonan, W.K. and Tschoegl, N.W., 'The effect of pressure on the mechanical properties of polymers. 2. Expansivity and compressibility measurements', Macromolecules 16, 1983, 55-59.

    Google Scholar 

  • Moonan, W.K. and Tschoegl, N.W., 'The effect of pressure on the mechanical properties of polymers. 3. Substitution of the glassy parameters for those of the occupied volume', Internat. Polym. Mater. 10, 1984, 199-211.

    Google Scholar 

  • Moonan, W.K. and Tschoegl, N.W., 'The effect of pressure on the mechanical properties of polymers. IV. Measurements in torsion', J. Polym. Sci., Polym. Phys. Ed. 23, 1985, 623-651.

    Google Scholar 

  • Murnaghan, F.D., Finite Deformation of Elastic Solids, Wiley, New York, 1951, 68.

    Google Scholar 

  • O'Reilly, J.M., 'The effect of pressure on glass temperature and dielectric relaxation time of polyvinyl acetate', J. Polym. Sci. 57, 1962, 429-444.

    Google Scholar 

  • O'Reilly, J.M., Tribone, J.J. and Greener, J., 'Effect of combined pressure and temperature changes on structural recovery of glass-forming materials I. Extension of the KAHR model', Polym. Sci., Polym. Phys. Ed. 26, 1988, 501-513.

    Google Scholar 

  • Paterson, M.S., 'Effect of pressure on Young's modulus and the glass transition in rubbers', J. Appl. Phys. 35, 1964, 176-179.

    Google Scholar 

  • Plazek, D.J., 'Temperature dependence of viscoelastic behavior of polystyrene', J. Phys. Chem. 69, 1965, 3480-3487.

    Google Scholar 

  • Plazek, D.J., 'Magnetic bearing torsional creep apparatus', J. Polym. Sci. A2(6), 1968, 621-638.

    Google Scholar 

  • Prodan, T., 'The effect of pressure and temperature on the shear relaxation behavior of timedependent materials', Ph.D. Thesis, Department of Mechanical Engineering, University of Ljubljana, Slovenia, 2001, in preparation.

    Google Scholar 

  • Ramos, A.R, Kovacs, A.J., O'Reilly, J.M., Tribone, J.J. and Greener, J., 'Effect of combined pressure and temperature changes on structural recovery of glass forming materials. I. Extension of the KAHR model', J. Polym. Sci., Polym. Phys. Ed. 26, 1988, 501-513.

    Google Scholar 

  • Rusch, K.C., 'Time-temperature superposition and relaxational behavior in polymeric glasses', J. Macromol. Sci.-Phys. B2, 1968a, 179-204.

    Google Scholar 

  • Rusch, K.C., 'The relaxational behavior of heterogeneous polymers', J. Macromol. Sci.-Phys. B2, 1968b, 421-447.

    Google Scholar 

  • Sane, S. and Knauss,W.G., 'The time-dependent bulk response of poly(methyl methacrylate)', Mech. Time-Dependent Mater. 5, 2001, 293-324.

    Google Scholar 

  • Schwarzl, F.R. and Zahradnik, F., 'The time temperature superposition of the glass-rubber transition of amorphous polymers and the free volume', Rheol. Acta 19, 1980, 137-152.

    Google Scholar 

  • Shen, M.C. and Eisenberg, A., 'Glass transitions in polymers', Prog. Solid State Chem. 3, 1966, 407-481.

    Google Scholar 

  • Simha, R. and Somcynsky, T., 'Statistical thermodynamics of spherical and chain molecule fluids', Macromolecules 2, 1969, 342-350.

    Google Scholar 

  • Simha, R. and Wilson, P.S., 'Thermal expansion of amorphous polymers at atmospheric pressure. II. Theoretical considerations', Macromolecules 6, 1973, 902-913.

    Google Scholar 

  • Somcynsky, T. and Simha, R., 'Hole theory of liquids and glass transition', J. Appl. Phys. 42, 1971, 4545-4548.

    Google Scholar 

  • Stacer, R.G. and Husband, D.M., 'Small deformation viscoelastic response of gum and highly filled elastomers', Rheol. Acta 29, 1990, 152-162.

    Google Scholar 

  • Tait, P., Physics and Chemistry of the Voyage of H.M. Ship Challenger, Vol. II, Cambridge University Press, Cambridge, 1900, 1.

    Google Scholar 

  • Tobolsky, A.V., Properties and Structure of Polymers, Wiley and Sons, New York, 1960.

    Google Scholar 

  • Tool, A.Q., 'Relation between inelastic deformability and thermal expansion of glass in its annealing range', J. Amer. Ceram. Soc. 29, 1946, 240-253.

    Google Scholar 

  • Tribone, J.J., O'Reilly, J.M. and Greener, J., 'Pressure-jump volume-relaxation studies of polystyrene in the glass transition region', J. Polym. Sci.: Part B: Polym. Phys. 27, 1989, 837-857.

    Google Scholar 

  • Tschoegl, N.W., The Phenomenological Theory of Linear Viscoelastic Behavior, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  • Tschoegl, N.W., Fundamentals of Equilibrium and Steady-State Thermodynamics, Elsevier, Amsterdam, 2000.

    Google Scholar 

  • Tschoegl, N.W. and Emri, I., 'Generating line spectra from experimental responses. Part III: Interconversion between relaxation and retardation behavior', Internat. J. Polym. Mater. 18, 1992, 117-127.

    Google Scholar 

  • Tschoegl, N.W. and Emri, I., 'Generating line spectra from experimental responses. Part II: Storage and loss functions', Rheol. Acta 32, 1993, 322-327.

    Google Scholar 

  • Tschoegl, N.W., Knauss, W.G. and Emri, I., 'Poisson's ratio in linear viscoelasticity-A critical review', Mech. Time-Dependent. Mater. 6, 2002, 3-51.

    Google Scholar 

  • Utracki, L.A., 'Pressure dependence of Newtonian viscosity', Polym. Engrg. Sci. 23, 1983a, 446-451.

    Google Scholar 

  • Utracki, L.A., 'Pressure and temperature dependent liquid viscosities', Polym. Prep., Amer. Chem. Soc. 24, 1983b, 113.

    Google Scholar 

  • Ward, I.M., Mechanical Properties of Solid Polymers, Wiley-Interscience, London, 1971.

    Google Scholar 

  • Williams, M.L., Landel, R.F. and Ferry, J.D., 'The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids', J. Amer. Chem. Soc. 77, 1955, 3701-3707.

    Google Scholar 

  • Wunderlich, B., Macromolecular Physics, Volume I, Crystal Structure, Morphology, Defects, Academic Press, New York, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tschoegl, N., Knauss, W.G. & Emri, I. The Effect of Temperature and Pressure on the Mechanical Properties of Thermo- and/or Piezorheologically Simple Polymeric Materials in Thermodynamic Equilibrium – A Critical Review. Mechanics of Time-Dependent Materials 6, 53–99 (2002). https://doi.org/10.1023/A:1014421519100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014421519100

Navigation