Skip to main content
Log in

Influence of Convulsants on Rat Brain Activities of Alanine Aminotransferase and Aspartate Aminotransferase

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

There exist differences between 12-day-old and adult rats in the onset of seizures induced by some inhibitors of glutamate decarboxylase (GAD). The aim of study was to investigate if there are differences between both groups in activities of rat brain alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the enzymes involved in glutamate metabolism, after the administration of 3-mercaptopropionic acid as specific GAD inhibitor or isoniazid as less specific general inhibitor of pyridoxal enzymes. Activities of both aminotransferases in a supernatant 20,000 g of the whole brain (containing predominantly cytosolic isoforms of enzymes) were increased at the beginning of 3-mercaptopropionic acid-induced generalized tonic-clonic seizures. At isoniazid-induced generalized tonic-clonic seizures, a significant increase in both enzyme activities was observed in adult rat brain. In the 12-day-old rat brain, ALT and AST activities reached about 40% and about 50–60% of adult control levels, respectively. In in vitro experiments, no influence of 3-mercaptopropionic acid on transaminase activities was found and an inhibitory effect of isoniazid on the enzymes was confirmed. Increased aminotransferase activities might participate in the enhanced synthesis of excitatory amino acid neurotransmitters in the nervous system, which may take a part in the initiation of epileptic seizures. Alternatively, the increased AST activity may be connected with an increased transport of NADH from the cytosol to mitochondria, while the increased ALT activity would represent the transformation of pyruvate to alanine as a consequence of increased glycolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Meldrum, B. S. 1994. The role of glutamate in epilepsy and other CNS disorders. Neurology 44:S14–S23.

    Google Scholar 

  2. Urbanska, E. M., Czuczwar, S. J., Kleinrok, Z., and Turski, W. A. 1998. Excitatory amino acids in epilepsy. Restorat. Neurolog. Neurosci. 13:25–39.

    Google Scholar 

  3. Benuck, M. and Lajtha, A. 1975. Aminotransferase activity in brain. Int. Rev. Neurobiol. 17:85–129.

    Google Scholar 

  4. Kugler, P. 1993. Enzymes involved in glutamatergic and GABAergic neurotransmission. Int. Rev. Cytolog. 147:285–336.

    Google Scholar 

  5. Palaiologos, G., Hertz, L., and Schousboe, A. 1988. Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J. Neurochem. 51:317–320.

    Google Scholar 

  6. Palaiologos, G., Hertz, L., and Schousboe, A. 1989. Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons. Neurochem. Res. 14:359–366.

    Google Scholar 

  7. Kubo, T., Kihara, M., and Misu, Y. 1990. Electrical stimulationevoked release of endogenous aspartate from rat medulla oblongata slices. Naunyn-Schmiedeberg's Arch. Pharmacol. 341:221–224.

    Google Scholar 

  8. Fonnum, F. 1993. Regulation of the synthesis of the transmitter glutamate pool. Prog. Biophys. Mol. Biol. 60:47–57.

    Google Scholar 

  9. Peng, L., Schousboe, A., and Hertz, L. 1991. Utilization of alpha-ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells. Neurochem. Res. 16:29–34.

    Google Scholar 

  10. Rodríguez de Lores Arnáiz, G., Alberici de Canal, M., and de Robertis, E. 1972. Alteration of GABA system and Purkinje cells in rat cerebellum by the convulsant 3-mercaptopropionic acid. J. Neurochem. 19:1379–1385.

    Google Scholar 

  11. Rodríguez de Lores Arnáiz, G., Alberici de Canal, M., Robiolo, B., and Mistrorigo de Pacheco, M. 1973. The effect of the convulsant 3-mercaptopropionic acid on enzymes of the gammaaminobutyrate system in the rat cerebral cortex. J. Neurochem. 21:615–623.

    Google Scholar 

  12. Mareš, P., Kubová, H., Zouhar, A., Folbergrová, J., Koryntová, H., and Staňková, L. 1993. Motor and electrocorticographic epileptic activity induced by 3-mercaptopropionic acid in immature rats. Epilepsy Res. 16:11–18.

    Google Scholar 

  13. Mareš, P. and Trojan, S. 1991. Ontogenetic development of isonicotinehydrazide-induced seizures in rats. Brain Dev. 13:121–125.

    Google Scholar 

  14. Netopilová, M., Dršata, J., Kubová, H., and Mareš, P. 1995. Differences between immature and adult rats in brain glutamate decarboxylase inhibition by 3-mercaptopropionic acid. Epilepsy Res. 20:179–184.

    Google Scholar 

  15. Netopilová, M. 1997. Activity of glutamate decarboxylase in rat brain during experimental epileptic seizures in ontogenesis. Doctoral thesis, Charles University, Hradec Králové. pp. 141.

  16. Bergmeyer, H. U. and Bernt, E. 1974. Glutamat-Oxalacetat-Transaminase. UV-Test, manualle Methode. Pages 769–775, in Bergmeyer, H. U. (ed.), Methoden der enzymatischen Analyse, Band I, Verlag Chemie, Weinheim.

    Google Scholar 

  17. Bergmeyer, H. U. and Bernt, E. 1974. Glutamat-Pyruvat-Transaminase. UV-Test, manualle Methode. Pages 785–791, in Bergmeyer, H. U. (ed.), Methoden der enzymatischen Analyse, Band I, Verlag Chemie, Weinheim.

    Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  19. Waksman, A. and Rendon, A. 1968. Postnatal development of aspartate aminotransferase isozymes in different organs of the rat. Arch. Biochem. Biophys. 123:201–208.

    Google Scholar 

  20. Amore, G. and Bonavita, V. 1965. Aspartate aminotransferase in the brain of the developing rat. Life Sci. 4:2417–2424.

    Google Scholar 

  21. Orlický, J., Ruš čák, M., Ruš čáková, D., and Hager, H. 1979. Two forms of alanine aminotransferase in rat brain during ontogeny. J. Neurochem. 32:1551–1558.

    Google Scholar 

  22. Jenkins, W. T., Orlowski, S., and Sizer, I. W. 1959. Glutamic aspartic transaminase. III. Inhibition by isoniazid. J. Biol. Chem. 234:2657–2660.

    Google Scholar 

  23. Alioto, M. R. and Ayala, M. 1960. Altre ricerche sulla inibizione esercitata dall'idrazide della'ac. isonicotinico (INI) sull'-alanina-glutammico transaminasi. Boll. Soc. Ital. Biol. Sper. 36:327–329.

    Google Scholar 

  24. Pirrelli, A. 1961. Rapporti tra glutammico-ossalacetico e glutammico-piruvico transaminasi epatica e cerebrale di ratto e idrazide dell'acido isonicotinico. Accad. Pugliese Sci. Atti. Relaz. 19:133–143.

    Google Scholar 

  25. Meldrum, B. S. 1975. Epilepsy and γ-aminobutyric acid-mediated inhibition. Int. Rev. Neurobiol. 17:1–36.

    Google Scholar 

  26. Woodbury, D. M. 1980. Convulsant drugs: Mechanisms of action. Pages 249–303, in Glaser, G. H., Penry, J. K., and Woodbury, D. M. (eds.), Antiepileptic drugs: Mechanisms of action, Raven Press, New York.

    Google Scholar 

  27. Stankewicz, M. J., Cheng, S., and Martinez-Carrion, M. 1971. Mitochondrial glutamate aspartate transaminase. Differential action of thiol reagents with the supernatant enzyme. Biochemistry 10:2877–2884.

    Google Scholar 

  28. Bonasera, N., Smorto, M., and Bonavita, V. 1967. Isoniazid seizures in the developing rat and the content of pyridoxal 5-phosphate in the brain. Brain Res. 4:383–386.

    Google Scholar 

  29. Lamar, C. Jr. 1970. Mercaptopropionic acid: A convulsant that inhibits glutamate decarboxylase. J. Neurochem. 17:165–170.

    Google Scholar 

  30. Tunnicliff, G. 1990. Action of inhibitors on brain glutamate decarboxylase. Int. J. Biochem. 22:1235–1241.

    Google Scholar 

  31. Killam, K. F. and Bain, J. A. 1957. Convulsant hydrazides I: In vitro and in vivo inhibition of vitamin B6 enzymes by convulsant hydrazides. J. Pharmacol. Exptl. Therap. 119:255–262.

    Google Scholar 

  32. Netopilová, M., Dršata, J., Haugvicová, R., Kubová, H., and Mares¡, P. 1997. Inhibition of glutamate decarboxylase activity by 3-mercaptopropionic acid has different time course in the immature and adult rat brains. Neurosci. Lett. 226:68–70.

    Google Scholar 

  33. Najlerahim, A., Harrison, P. J., Barton, A. J. L., Heffernan, J., and Pearson, R. C. A. 1990. Distribution of messenger RNAs encoding the enzymes glutaminase, aspartate aminotransferase and glutamic acid decarboxylase in rat brain. Mol. Brain Res. 7:317–333.

    Google Scholar 

  34. Howse, D. C. and Duffy, T. E. 1975. Control of the redox state of the pyridine nucleotides in the rat cerebral cortex. Effect of electroshock-induced seizures. J. Neurochem. 24:935–940.

    Google Scholar 

  35. Ereci´nska, M., Nelson, D., Nissim, I., Daikhin, Y., and Yudkoff, M. 1994. Cerebral alanine transport and alanine aminotransferase reaction: Alanine as a source of neuronal glutamate. J. Neurochem. 62:1953–1964.

    Google Scholar 

  36. Griffin, J. L., Rae, C., Dixon, R. M., Radda, G. K., and Matthews, P. M. 1998. Excitatory amino acid synthesis in hypoxic brain slices: Does alanine act as a substrate for glutamate production in hypoxia? J. Neurochem. 71:2477–2486.

    Google Scholar 

  37. Cooper, A. J. L. and Meister, A. 1985. Metabolic significance of transamination. Pages 534–563, in Christen, P. and Metzler, D. E. (eds.), Transaminases, John Wiley and Sons, New York.

    Google Scholar 

  38. Lia, M., Barouki, R., and Waelsch, S. G. 1995. Chromosomal deletions around the albino locus in the mouse cause loss of hormone-inducible expression of the unlinked structural gene encoding cytosolic aspartate aminotransferase. Proc. Natl. Acad. Sci. USA 92:788–790.

    Google Scholar 

  39. Pavé-Preux, M., Ferry, N., Bouguet, J., Hanoune, J., and Barouki, R. 1988. Nucleotide sequence and glucocorticoid regulation of the mRNAs for the isoenzymes of rat aspartate aminotransferase. J. Biol. Chem. 263:17459–17466.

    Google Scholar 

  40. Rosen, F., Roberts, N. R., Budnick, L. E., and Nichol, C. A. 1958. An enzymic basis for the gluconeogenic action of hydrocortisone. Science 127:287–288.

    Google Scholar 

  41. Patnaik, S. K. 1990. Differential effects of hydrocortisone on alanine aminotransferase isoenzymes of the cerebral hemisperes and cerebellum of rats during growth, development, and senescence. Biochem. Int. 21:175–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Netopilová, M., Haugvicová, R., Kubová, H. et al. Influence of Convulsants on Rat Brain Activities of Alanine Aminotransferase and Aspartate Aminotransferase. Neurochem Res 26, 1285–1291 (2001). https://doi.org/10.1023/A:1014386416109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014386416109

Navigation