Skip to main content
Log in

Structure of Nanoparticles: II. Magic Numbers of Zirconia Nanoparticles

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The concepts of generalized crystallography and the generalized geometric approach are applied to the description of the structural features of zirconia nanoparticles. The magic numbers are counted for polymorphic (cubic, tetragonal, and monoclinic) zirconia modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Shevchenko, V.Ya. and Madison, A.E., Structure of Nanoparticles: I. Generalized Crystallography of Nanoparticles and Magic Numbers, Fiz. Khim. Stekla, 2002, vol. 28, no. 1, pp. 60–65 [Glass Phys. Chem. (Engl. transl.), 2002, vol. 28, no. 1, pp. 40‐43].

    Google Scholar 

  2. Mackay, A.L., Finney, J.L., and Gotoh, K., Closest Packing of Equal Spheres on a Spherical Surface, Acta Crystallogr., Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr., 1977, vol. 33, pp. 98–100.

    Google Scholar 

  3. MontejanoCarrizales, J.M., AguileraGraja, F., and MoranLopez, J.L. Direct Enumeration of the Geometrical Characteristics of Clusters, Nanostruct. Mater., 1997, vol. 8, no. 3, pp. 269–287.

    Google Scholar 

  4. Andreev, V.D., Malik, V.R., and Podzyarei, G.A., Diamond Lattice in Space of Coordination Spheres, Zh. Strukt. Khim., 2001, vol. 42, no. 2, pp. 280–286.

    Google Scholar 

  5. Sloane, N.J.A. and Teo, B.K., Theta Series and Magic Numbers for Close-Packed Spherical Clusters, J. Chem. Phys., 1985, vol. 83, no. 12, pp. 6520–6534.

    Google Scholar 

  6. Sloane, N.J.A., Theta Series and Magic Numbers for Diamond and Certain Ionic Crystal Structures, J. Math. Phys., 1987, vol. 28, no. 7, pp. 1653–1657.

    Google Scholar 

  7. Teo, B.K., Generalization of the Topological Electron Counting Rules, Inorg. Chem., 1985, vol. 24, no. 24, pp.4902–4913.

    Google Scholar 

  8. Farges, J., DeFeraudy, M.F., Raoult, B., and Torchet, G., Relaxation of Mackay Icosahedra, Acta Crystallogr., Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr., 1982, vol. 38, pp. 656–663.

    Google Scholar 

  9. Glasser, M.L. and Zucker, I.J., Lattice Sums, Theor. Chem.: Adv. Perspect., 1980, vol. 5, pp. 67–139.

    Google Scholar 

  10. Teo, B.K. and Sloane, N.J.A., Atomic Arrangements and Electronic Requirements for Close-Packed Circular and Spherical Clusters, Inorg. Chem., 1986, vol. 25, no. 14, pp. 2315–2322.

    Google Scholar 

  11. Madison, A.E., Differences in Atomic Environment of Nonequivalent Sites in Structures of SiC Polytypes, Fiz. Tverd. Tela (St. Petersburg), 1999, vol. 41, no. 2, pp.183–186.

    Google Scholar 

  12. Smith, D.K. and Newkirk, H.W., The Crystal Structure of Baddeleyite (Monoclinic ZrO2) and Its Relation to the Polymorphism of ZrO2, Acta. Crystallogr., 1965, vol. 18, no. 6, pp. 983–991.

    Google Scholar 

  13. Aldebert, P. and Traverse, J.-P., Structure and Ionic Mobility of Zirconia at Temperature, J. Am. Ceram. Soc., 1985, vol. 68, no. 1, pp. 34–40.

    Google Scholar 

  14. Wang, C.Z. and Ho, K.M., Tight-Binding Molecular Dynamics Studies of Covalent Systems, Adv. Chem. Phys., 1996, vol. 93, pp. 651–702.

    Google Scholar 

  15. Uvarov, N.F. and Boldyrev, V.V., Size Effects in the Chemistry of Heterogeneous Systems, Usp. Khim., 2001, vol. 70, no. 4, pp. 307–329.

    Google Scholar 

  16. Hartman, P., Dependence of the Crystal Morphology on the Crystal Structure, Rost Kristallov, 1967, vol. 7, pp. 8–24.

    Google Scholar 

  17. Hartman, P., The Equilibrium Form in a Phase of Small Dimensions, in Crystal Growth: An Introduction, Amsterdam: North-Holland, 1973, pp. 358–366.

  18. Hartman, P., Structure and Morphology, in Crystal Growth: An Introduction, Amsterdam: North-Holland, 1973, pp. 367–402.

  19. Chernov, A.A., Givargizov, E.I., Bagdasarov, Kh.S., Kuznetsov, V.A., Dem'yanets, L.N., and Lobachev, L.N., Sovremennaya kristallografiya: Vol. 3. Obrazovanie kristallov (Modern Crystallography: Crystal Formation), Vainshtein, B.K., Ed., Moscow: Nauka, 1980, vol. 3.

    Google Scholar 

  20. Sotiropoulou, D. and Nikolopoulos, P., Surface and Grain-Boundary Energies of Cubic Zirconia, J. Mater. Sci., 1991, vol. 26, no. 5, pp. 1395–1400.

    Google Scholar 

  21. Shevchenko, V.Ya., Madison, A.E., and Glushkova, V.B., Structure of Nanosized Zirconia Centaur Particles, Fiz. Khim. Stekla, 2001, vol. 27, no. 3, pp. 419–428 [Glass Phys. Chem. (Engl. transl.), 2001, vol. 27, no. 4, pp. 400‐405].

    Google Scholar 

  22. Kashchiev, D., On the Relation between Nucleation Work, Nucleus Size, and Nucleation Rate, J. Chem. Phys., 1982, vol. 76, no. 10, pp. 5098–5102.

    Google Scholar 

  23. Oxtoby, D.W., Nucleation of Crystals from the Melt, Adv. Chem. Phys., 1988, vol. 70, part 2, pp. 263–296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevchenko, V.Y., Madison, A.E. Structure of Nanoparticles: II. Magic Numbers of Zirconia Nanoparticles. Glass Physics and Chemistry 28, 44–49 (2002). https://doi.org/10.1023/A:1014253514099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014253514099

Keywords

Navigation