Skip to main content
Log in

A Posteriori Error Estimates for Distributed Convex Optimal Control Problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present an a posteriori error analysis for finite element approximation of distributed convex optimal control problems. We derive a posteriori error estimates for the coupled state and control approximations under some assumptions which hold in many applications. Such estimates, which are apparently not available in the literature, can be used to construct reliable adaptive finite element approximation schemes for control problems. Explicit estimates are obtained for some model problems which frequently appear in real-life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ainsworth, J.T. Oden and C.Y. Lee, Local a posteriori error estimators for variational inequalities, Numer. Methods Partial Differential Equations 9 (1993) 22–33.

    Google Scholar 

  2. M. Ainsworth and J.T. Oden, A posteriori error estimators in finite element analysis, Comput.Methods Appl. Mech. Engrg. 142 (1997) 1–88.

    Google Scholar 

  3. P. Alotto et al., Mesh adaption and optimisation techniques in magnet design, IEEE Trans. Magn. 32 (1996).

  4. W. Alt and U. Mackenroth, Convergence of finite element approximation to state constrained convex parabolic boundary control problems, SIAM J. Control Optim. 27 (1989) 718–736.

    Google Scholar 

  5. I. Babuska and W.C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 5 (1978) 736–754.

    Google Scholar 

  6. N.V. Banichuk et al., Mesh refinement for shape optimisation, Structural Optimisation 9 (1995) 45–51.

    Google Scholar 

  7. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985) 283–301.

    Google Scholar 

  8. J. Baranger and H.E. Amri, A posteriori error estimators in finite element approximation of quasi-Newtonian flows, M2AN 25 (1991) 31–48.

    Google Scholar 

  9. V. Barbu, Optimal Control for Variational Inequalities, Research Notes in Mathematics, Vol. 100 (Pitman, London, 1984).

    Google Scholar 

  10. J.W. Barrett and W.B. Liu, Finite Element Approximation of Some Degenerate Quasi-linear Problems, Lecture Notes in Mathematics, Vol. 303 (Pitman, 1994) pp. 1–16.

    Google Scholar 

  11. R. Becker and H. Kapp, Optimization in PDE models with adaptive finite element discretization, in: Proc. ENUMATH'97, Heidelberg, September 29-October 3, 1997 (World Scientific, 1998) (in press).

  12. R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: basic concept, SFB 359, University of Heidelberg (1998).

  13. C. Bernardi and V. Girault, A local regularisation oprator for triangular and quadrilateral finite element, SIAM J. Numer. Anal. 35(5) (1998) 1893–1916.

    Google Scholar 

  14. P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North Holland, Amsterdam, 1978).

    Google Scholar 

  15. Z.H. Ding, L. Ji and J.X. Zhou, Constrained LQR problems in elliptic distributed control systems with point observations, SIAM J. Control Optim. 34 (1996) 264–294.

    Google Scholar 

  16. T. Dreyer, B. Maar and V. Schulz, Multigrid optimization in applications, J. Comput. Appl. Math. 120 (2000) 67–84.

    Google Scholar 

  17. R.D. Duran et al., On the asymptotic exactness of error estimators for linear triangular finite elements, Numer. Math. 59 (1991) 107–127.

    Google Scholar 

  18. F.S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl. 44 (1973) 28–47.

    Google Scholar 

  19. D.A. French and J.T. King, Approximation of an elliptic control problem by the finite element method, Numer. Funct. Anal. Appl. 12 (1991) 299–315.

    Google Scholar 

  20. T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO Anal. Numer. 13 (1979) 313–328.

    Google Scholar 

  21. R. Glowinski, J.L. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities (North-Holland, The Netherlands, 1976).

    Google Scholar 

  22. M.D. Gunzburger, L. Hou and Th. Svobodny, Analysis and finite element approximation of optimal control problems for stationary Navier-Stokes equations with Dirichlet controls, RAIRO Model. Math. Anal. Numer. 25 (1991) 711–748.

    Google Scholar 

  23. J. Haslinger and P. Neittaanmaki, Finite Element Approximation for Optimal Shape Design (Wiley, Chichester, 1989).

    Google Scholar 

  24. C. Johnson, Adaptive finite element methods for the obstacle problem, Math. Models Methods Appl. Sci. 2 (1992) 483–487.

    Google Scholar 

  25. R. Kornhuber, A posteriori error estimates for elliptic variational inequalities, Comput. Math. Appl. 31 (1996) 49–60.

    Google Scholar 

  26. G. Knowles, Finite element approximation of parabolic time optimal control problems, SIAM J. Control Optim. 20 (1982) 414–427.

    Google Scholar 

  27. A. Kufner, O. John and S. Fucik, Function Spaces (Nordhoff, Leyden, The Netherlands, 1977).

    Google Scholar 

  28. I. Lasiecka, Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions, SIAM J. Control Optim. 22 (1984) 744–750.

    Google Scholar 

  29. R. Li, T. Tang and P.-W. Zhang, Moving mesh methods in multiple dimensions based on harmonic maps (2000) (submitted).

  30. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations (Springer-Verlag, Berlin, 1971).

    Google Scholar 

  31. W.B. Liu and J.W. Barrett, Error bounds for the finite element approximation of a degenerate quasilinear parabolic variational inequality, Adv. Comput. Math. 1(2) (1993) 223–239.

    Google Scholar 

  32. W.B. Liu and J.W. Barrett, Quasi-norm error bounds for the finite element approximation of degenerate quasilinear elliptic variational inequalities, RAIRO Numer. Anal. 28 (1994) 725–744.

    Google Scholar 

  33. W.B. Liu, H.P. Ma and T. Tang, On mixed error estimates for elliptic obstacle problems, Adv. Comput. Math. (accepted).

  34. W.B. Liu and J. Rubio, Optimality conditions for strongly monotone variational inequalities, Appl. Math. Optim. 27 (1993) 291–312.

    Google Scholar 

  35. W.B. Liu and D. Tiba, Error estimates for the finite element approximation of a class of nonlinear optimal control problems, J. Numer. Funct. Optim. (1999) (accepted).

  36. W.B. Liu and N. Yan, A posteriori error estimates for a model boundary optimal control problem, J. Comput. Appl. Math. 120 (2000) 491–506.

    Google Scholar 

  37. W.B. Liu and N. Yan, A posteriori error estimators for a class of variational inequalities, J. Sci. Comput. 35 (2000) 361–393.

    Google Scholar 

  38. W.B. Liu and N. Yan, A posteriori error estimates for convex boundary optimal control problems, SIAM J. Numer. Anal. 39 (2001) 73–99.

    Google Scholar 

  39. K. Malanowski, Convergence of approximations vs. regularity of solutions for convex, control constrained, optimal control systems, Appl. Math. Optim. 8 (1982).

  40. R.S. McKnight and Jr. Borsarge, The Ritz-Galerkin procedure for parabolic control problems, SIAM J. Control Optim. 11 (1973) 510–524.

    Google Scholar 

  41. P. Neittaanmaki and D. Tiba, Optimal Control of Nonlinear Parabolic Systems. Theory, Algorithms and Applications (M. Dekker, New York, 1994).

    Google Scholar 

  42. O. Pironneau, Optimal Shape Design for Elliptic Systems (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  43. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990) 483–493.

    Google Scholar 

  44. D. Tiba and F. Troltzsch, Error estimates for the discretization of state constrained convex control problems, Numer. Funct. Anal. Optim. 17 (1996) 1005–1028.

    Google Scholar 

  45. F. Troltzsch, Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems-strong convergence of optimal control, Appl. Math. Optim. (1994).

  46. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques (Wiley-Teubner, 1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Yan, N. A Posteriori Error Estimates for Distributed Convex Optimal Control Problems. Advances in Computational Mathematics 15, 285–309 (2001). https://doi.org/10.1023/A:1014239012739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014239012739

Navigation