Skip to main content
Log in

Global Simulation of Magnetospheric Space Weather Effects of the Bastille Day Storm

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present results from a global simulation of the interaction of the solar wind with Earth's magnetosphere, ionosphere, and thermosphere for the Bastille Day geomagnetic storm and compare the results with data. We find that during this event the magnetosphere becomes extremely compressed and eroded, causing 3 geosynchronous GOES satellites to enter the magnetosheath for an extended time period. At its extreme, the magnetopause moves at local noon as close as 4.9 R E to Earth which is interpreted as the consequence of the combined action of enhanced dynamic pressure and strong dayside reconnection due to the strong southward interplanetary magnetic field component B z, which at one time reaches a value of −60 nT. The lobes bulge sunward and shield the dayside reconnection region, thereby limiting the reconnection rate and thus the cross polar cap potential. Modeled ground magnetic perturbations are compared with data from 37 sub-auroral, auroral, and polar cap magnetometer stations. While the model can not yet predict the perturbations and fluctuations at individual ground stations, its predictions of the fluctuation spectrum in the 0–3 mHz range for the sub-auroral and high-latitude regions are remarkably good. However, at auroral latitudes (63° to 70° magnetic latitude) the predicted fluctuations are slightly too high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Fedder, J. A. and Lyon, J. G.: 1987, Geophys. Res. Lett. 14, 880.

    Article  ADS  Google Scholar 

  • Fuller-Rowell, T. J., Rees, D., Quegan, S., Moffett, R. J., Codrescu, M. V., and Millward, G. H.: 1996, in R. W. Schunk (ed.), ‘A Coupled Termosphere-Ionosphere Model (CTIM)’ STEP Report, NOAA/NGDC, Boulder, Colorado, Scientific Committee on Solar Terrestrial Physics (SCOSTEP), p. 217.

  • Gombosi, T. I., DeZeeuw, D. L., Groth, C. P. T., Powel, K. G., and Song, P.: 1998, in: T. Chang and J. R. Jasperse (eds.), 'The Length of the Magentotail for Northward IMF: Results of 3D MHD Simulations', Phys. Space Plasmas (1998), Vol. 15. Cambridge, Mass., p. 121.

  • Janhunen, P., Pulkkinen, T. I., and Kauristie, K.: 1995, Geophys. Res. Lett. 22, 2049.

    Article  ADS  Google Scholar 

  • Kennel, C. F. and Petschek, H. E.: 1966, J. Geophys. Res. 71, 1.

    ADS  Google Scholar 

  • Lyon, J. G., Lopez, R. E., Goodrich, C. C., Wiltberger, M., and Papadopoulos, K.: 1998, Geophys. Res. Lett. 25, 3039.

    Article  ADS  Google Scholar 

  • Lyons, L. R., Evans, D., and Lundin, R.: 1979, J. Geophys. Res. 84, 457.

    Article  ADS  Google Scholar 

  • Ogino, T.: 1986, J. Geophys. Res. 91, 6791.

    Article  ADS  Google Scholar 

  • Raeder, J.: 1999, J. Geophys. Res. 104, 17357.

    Article  ADS  Google Scholar 

  • Raeder, J., Berchem, J., and Ashu-Abdalla, M.: 1998, J. Geophys. Res. 103, 14787.

    Article  ADS  Google Scholar 

  • Raeder, J., Wang, Y., and Fuller-Rowell, T.: 2001, in P. Song, G; Siscoe, and H. J. Singer (eds.), 'Geomagnetic Storm Simulation with a Coupled Magnetosphere-Ionosphere Model', Space Weather, AGU Geophys. Monogr. Ser. American Geophysical Union, in press.

  • Raeder, J., Vaisberg, O., Smirnov, V., and Avanov, L.: 2000, J. Atmospheric Solar-Terrest. Phys. 62, 833.

    Article  ADS  Google Scholar 

  • Raeder, J., McPherron, R. L., Frank, L. A., Paterson, W. R., Sigwarth, J. B., Lu, G., Singer, H. J., Kokubun, S., Mukai, T., and Slavin, J. A.: 2001, J. Geophys. Res. 106, 381.

    Article  ADS  Google Scholar 

  • Richmond, A. D. and Kamide, Y.: 1988, J. Geophys. Res. 93, 5741.

    Article  ADS  Google Scholar 

  • Richmond, A. D. and Roble, R. G.: 1987, J. Geophys. Res. 92, 12365.

    Article  ADS  Google Scholar 

  • Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., and Hardy, D.: 1987, J. Geophys. Res. 92, 2565.

    Article  ADS  Google Scholar 

  • Roble, R. G. and Ridley, E. C.: 1994, Geophys. Res. Lett. 21, 417.

    Article  ADS  Google Scholar 

  • Russell, C. T., Luhmann, J. G., and Lu, G.: 2001, J. Geophys. Res., in press.

  • Slinker, S. P., Fedder, J. A., Chen, J., and Lyon, J. G.: 1998, J. Geophys. Res. 103, 26243.

    Article  ADS  Google Scholar 

  • Tanaka, T.: 1995, J. Geophys. Res. 100, 12057.

    Article  ADS  Google Scholar 

  • Weimer, D. R., Gurnett, D. A., Goertz, C. K., Menietti, J. D., Burch, J. L., and Sudiura, M.: 1987, J. Geophys. Res. 92, 187.

    Article  ADS  Google Scholar 

  • Weimer, D. R., Reinleitner, L. A., Kan, J. R., Zhu, L., and Akasofu, S. I.: 1990, J. Geophys. Res. 95, 18981.

    Article  ADS  Google Scholar 

  • Winglee, R. M. and Menietti, J. D.: 1998, J. Geophys. Res. 103, 9189.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raeder, J., Wang, Y., Fuller-Rowell, T. et al. Global Simulation of Magnetospheric Space Weather Effects of the Bastille Day Storm. Sol Phys 204, 323–337 (2001). https://doi.org/10.1023/A:1014228230714

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014228230714

Keywords

Navigation