Skip to main content
Log in

A Lattice BGK Scheme with General Propagation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The standard Lattice BGK (LBGK) scheme often encounters numerical instability in simulation of fluid flow with small kinematic viscosity or as the nondimensional relaxation time τ is close to 0.5. In this paper, based on a time-splitting scheme for the Boltzmann equation with discrete velocities, a new LBGK scheme with general propagation step is proposed to address this problem. In this model, two free parameters are introduced into the propagation step, which can be adjusted to obtain a small kinematic viscosity and improved numerical stability as well. Numerical simulations of the two-dimensional Taylor vortex and the unsteady Womersley flow are carried out to test the kinematic viscosity, numerical diffusion, and numerical stability of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. McNamara, G. R., and Zanetti, G. (1988). Use of the Boltzmann equation to simulate lattice-gas automata. Phys.Rev.Lett. 61, 2332.

    Google Scholar 

  2. Higuera, F., and Jimenez, J. (1989). Boltzmann approach to lattice gas simulations. Europhys.Lett. 9, 663.

    Google Scholar 

  3. Higuera, F., Succi, S., and Benzi, R. (1989). Lattice gas dynamics with enhanced collisions. Europhys.Lett. 9, 345.

    Google Scholar 

  4. Chen, S., Chen, H., Martinez, D., and Mattaeus, W. (1991). Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys.Rev.Lett. 67, 3776.

    Google Scholar 

  5. Qian, Y. H., d'Humiéres, D., and Lallemand, P. (1992). Lattice BGK models for Navier-Stokes equation. Europhys.Lett. 17, 479.

    Google Scholar 

  6. Chen, S., and Doolen, G. (1998). Lattice Boltzmann method for fluid flows. Annu.Rev.Fluid Mech. 30, 329.

    Google Scholar 

  7. Cao, N., Chen, S., Jin, S., and Martinez, D. (1997). Physical symmetry and lattice symmetry in the lattice Boltzmann method. Phys.Rev.E 55, R21.

    Google Scholar 

  8. McNamara, G. R., Garcia, A. L., and Alder, B. J. (1995). Stabilization of thermal lattice Boltzmann models. J.Statist.Phys. 81, 395.

    Google Scholar 

  9. Qian, Y. (1997). Fractional propagation and the elimination of staggered invariants in lattice-BGK models. Int.J.Mod.Phys.C 8, 753.

    Google Scholar 

  10. Zhang, R., Chen, H., Qian, Y. H., and Chen, S. (2001). Effective volumetric lattice Boltzmann scheme. Phys.Rev.E 63, 056705.

    Google Scholar 

  11. Abe, T. (1997). Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation. J.Comput.Phys. 131, 241.

    Google Scholar 

  12. He, X., and Luo, L.-S. (1997). On the theory of the lattice Boltzmann equation: From the Boltzmann equation to the lattice Boltzmann equation. Phys.Rev.E 56, 6811.

    Google Scholar 

  13. Shan, X., and He, X. (1998). Discretization of the velocity space in the solution of the Boltzmann equation, Phys.Rev.Lett. 80, 65.

    Google Scholar 

  14. He, X., Luo, L.-S., and Dembo, M. (1996). Some progress in lattice Boltzmann method 1: Nonuniform mesh grids. J.Comput.Phys. 129, 357.

    Google Scholar 

  15. Chen, H. (1998). Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept. Phys.Rev.E 58, 3955.

    Google Scholar 

  16. He, X., Chen, S., and Doolen, G. D. (1998). A novel Thermal model for the lattice Boltzmann method in incompressible limit. J.Comput.Phys. 146, 282.

    Google Scholar 

  17. Xi, H., Peng, G., and Chou, S.-H. (1999). Finite-volume lattice Boltzmann schemes in two and three dimensions. Phys.Rev.E 60, 3380.

    Google Scholar 

  18. Luo, L.-S. (2000). Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases, Phys.Rev.E 62, 4982.

    Google Scholar 

  19. Vahala, L., Wah, D., Vahala, G., et al. (2000). Thermal lattice Boltzmann simulation for multispecies fluid equilibration. Phys.Rev.E 62, 507.

    Google Scholar 

  20. Chen, S., Martinez, D., and Mei, R. (1996). On boundary conditions in lattice Boltzmann methods. Phys.Fluids 8, 2527.

    Google Scholar 

  21. Guo, Z., Shi, B., and Wang, N. (2000). Lattice BGK model for incompressible Navier-Stokes equation. J.Comput.Phys. 165, 288.

    Google Scholar 

  22. Lallemand, P., and Luo, L.-S. (2000). Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys.Rev.E 61, 6546.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Zheng, C. & Zhao, T.S. A Lattice BGK Scheme with General Propagation. Journal of Scientific Computing 16, 569–585 (2001). https://doi.org/10.1023/A:1013280900427

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013280900427

Navigation