Skip to main content
Log in

Tensile properties of a bone cement containing non-ionic contrast media

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The addition of contrast media such as BaSO4 or ZrO2 to bone cement has adverse effects in joint replacements, including third body wear and particle-induced bone resorption. Ground PMMA containing particles of the non-ionic water-soluble iodine-based X-ray contrast media, iohexol (IHX) and iodixanol (IDX), has, in bone tissue culture, shown less bone resorption than commercial cements. These water-soluble non-ceramic contrast media may change the mechanical properties of acrylic bone cement. The static mechanical properties of bone cement containing either IHX or IDX have been investigated. There was no significant difference in ultimate stress between Palacos R® (with 15.0 wt % of ZrO2) and plain cement with 8.0 wt % of IHX or IDX with mass median diameter (MMD) of 15.0 or 16.0 μm, while strain to failure was higher for the latter (p<0.02). The larger particles (15.0 or 16.0 μm) gave significantly higher (p<0.001) ultimate tensile strengths and strains to failure than smaller sizes (2.4 or 3.6 μm). Decreasing the amount of IHX from 10.0 wt % to 6.0 wt % gave a higher ultimate tensile strength (p<0.001) and strain to failure (p< 0.02). Scanning electron microscopy (SEM) showed the smaller contrast media particles attached to the surface of the polymer beads, which may prevent areas of the acrylate bead surface from participating in the polymerization. In conclusion, the mechanical properties of bone cement were influenced by the size and amount of contrast medium particles. By choosing the appropriate amount and size of particles of water-soluble non-ionic contrast media the mechanical properties of the new radio-opaque bone cement can be optimized, thus reaching and surpassing given regulatory standards.

© 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Caravia, D. Dowson, J. Fisher and B. Jobbins, Proc. Inst. Med. Eng. [H]. 204 (1990) 65.

    Google Scholar 

  2. G. H. Isaac, B. M. Wroblewski, J. R. Atkinson and D. Dowson, Clin. Orthop. 276 (1992) 115.

    Google Scholar 

  3. J. R. Cooper, D. Dowson, J. Fisher and B. Jobbins, J. Med. Eng. Technol. 15 (1991) 63.

    Google Scholar 

  4. A. Sabokbar, Y. Fujikawa, D. W. Murray and N. A. Athanasou, J. Bone Joint Surg. (Br.) 79-B (1997) 129.

    Google Scholar 

  5. A. Sabokbar, D. Murray and N. Athanasol, in “Bone Cements and Cementing Techniques” (Springer-Verlag, Berlin Heidelberg, 2001) p. 149.

    Google Scholar 

  6. J. Wimhurst, R. Brooks and N. Rushton, in “Proceedings of the 46th Orthopaedic Research Society, Orlando, FL, USA”, (March 2000), p. 536.

  7. P. Aspenberg and H. Van Der Vis, Clin. Orthop. 352 (1998) 75.

    Google Scholar 

  8. E. Ingham, T. R. Green, M. H. Stone, R. Kowalski, N. Watkins and J. Fisher, Biomaterials 21 (2000) 1005.

    Google Scholar 

  9. M. P. Ginebra, C. Aparicio, L. Albuixech, E. FernÁndez-BarragÁn, F. J. Gil, J. A. Planell, L. Morejon, B. Vazquez and J. San RomÁn, J. Mater. Sci.: Mater. in Med. 10 (1999) 733.

    Google Scholar 

  10. L. D. T. Topoleski and O. Vesnovsky, in “Proceedings of the 6th World Biomaterials Congress, Hawaii, USA”, (May 2000) (Society for Biomaterials, Minneapolis, 2000) p. 411.

    Google Scholar 

  11. T. AlmÉn, Acta Radiol. 36 (1995) Suppl. 399, p. 2.

    Google Scholar 

  12. A. Sabokbar, T. Hirayama, I. Itonaga, D. W. Murray, L. Lidgren and N. A. Athanasou, in “Proceedings of the 46th Orthopaedic Research Society, Orlando, FL, USA”, March 2000, p 171.

  13. J.-S. Wang, P. Aspenberg and L. Lidgren, in “Proceedings of European Society for Biomaterials 2001 Conference. London, UK”, September 2001.

  14. J.-S. Wang, and F. Kjellson, in “Bone Cements and Cementing Techniques” (Springer-Verlag, Berlin/Heidelberg, 2001) p. 81.

    Google Scholar 

  15. L. D. T. Topoleski, P. Ducheyne and J. M. Cuckler, J. Biomed. Mater. Res. 24 (1990) 135.

    Google Scholar 

  16. M. M. Vila, M. P. Ginebra, F. J. Gil and J. A. Planell, J. Biomed. Mater. Res. (Appl. Biomat.) 48 (1999) 128.

    Google Scholar 

  17. R. Specht, K.-D. KÜhn, W. Ege and H.-J. Kock, in “Bone Cements and Cementing Techniques” (Springer-Verlag, Berlin Heidelberg, 2001) p. 43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kjellson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kjellson, F., Wang, JS., Almén, T. et al. Tensile properties of a bone cement containing non-ionic contrast media. Journal of Materials Science: Materials in Medicine 12, 889–894 (2001). https://doi.org/10.1023/A:1012867824140

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012867824140

Keywords

Navigation