Skip to main content
Log in

Lubricant Spin-Off from Magnetic Recording Disks

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

As the rotation rate of magnetic recording disks increases over the next few years, lubricant spin-off from the disk surface may be significant. Lubricant thickness was measured as a function of spin time at 10 000 rpm on typical carbon overcoated magnetic recording disks initially lubricated with 10–135 Å of perfluoropolyether Zdol. The viscosity of the lubricant film increased as the film thickness decreased with spin time. Lubricant spin-off in response to air shear stress on the free surface was approximately described by viscous flow. The rate of lubricant removal by evaporation was compared to the spin-off removal rate in films between 10 and 50 Å thick. Dispersion interaction and chemisorption are expected to retain a molecularly thin film of lubricant on the disk surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.W. Tyndall and R.J. Waltman, J. Phys. Chem. B 104 (2000) 7085.

    Google Scholar 

  2. P.H. Kasai, Adv. Inf. Stor. Syst. 4 (1992) 291.

    Google Scholar 

  3. V.J. Novotny, T.E. Karis and R.J. Whitefield, Tribol. Trans. 40 (1997) 69.

    Google Scholar 

  4. T.E. Karis, Tribol. Lett. 10 (2001) 149.

    Google Scholar 

  5. Y. Hu and F.E. Talke, Tribology and Mechanics of Magnetic Storage Systems, STLE-SP25 (1988) 43.

  6. V.J. Novotny and M.A. Baldwinson, J. Appl. Phys. 70 (1991) 5647.

    Google Scholar 

  7. M. Yanagisawa, Tribology and Mechanics of Magnetic Storage Systems, STLE-SP22 (1987) 93.

  8. S. Middleman, J. Appl. Phys. 62 (1987) 2530.

    Google Scholar 

  9. C.M. Mate and R.S. Wilson, Fluorinated Surfaces, Coatings, and Films, ACS Symp. Ser. 787, eds. D.G. Castner and D.W. Grainger (Am. Chem. Soc., Washington, DC, 2001) ch. 7, pp. 83–95.

    Google Scholar 

  10. V.G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, 1962).

    Google Scholar 

  11. G.W. Tyndall, T.E. Karis and M.S. Jhon, Tribol. Trans. 42 (1999) 463.

    Google Scholar 

  12. X. Ma, J. Gui, L. Smoliar, K. Grannen, B. Marchon, M.S. Jhon and C.L. Bauer, J. Chem. Phys. 110 (1999) 3129.

    Google Scholar 

  13. M.A. Scarpulla and C.M. Mate, in: ACS National Meeting, San Diego, CA, 1–5 April 2001; Division of Colloid and Surface Chemistry, Molecular Tribology Symposium, Section A, Abstract 448, presented 5 April 2001.

  14. C.M. Mate and B. Marchon, Phys. Rev. Lett. 85 (2000) 3902.

    Google Scholar 

  15. J.R. Welty, C.E. Wicks and R.E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, 2nd Ed. (Wiley, New York, 1976) p. 588.

    Google Scholar 

  16. T.E. Karis and H.S. Nagaraj, Tribol. Trans. 43 (2000) 758.

    Google Scholar 

  17. S. Glasstone, K.L. Laidler and H. Eyring, The Theory of Rate Processes (McGraw-Hill, New York, 1941) p. 477.

    Google Scholar 

  18. J.M. Smith and H.C. van Ness, Introduction to Chemical Engineering Thermodynamics, 3rd Ed. (McGraw-Hill, New York, 1975) p. 227.

    Google Scholar 

  19. A.M. Cazabat, N. Fraysse, F. Heslot and P. Carles, J. Phys. Chem. 94 (1990) 7581.

    Google Scholar 

  20. T.E. Karis and G.W. Tyndall, J. Non Newt. Fluid Mech. 82 (1999) 287.

    Google Scholar 

  21. A.W. Adamson, Physical Chemistry of Surfaces, 3rd Ed. (Wiley, New York, 1976) p. 317.

    Google Scholar 

  22. M.F. Toney, C.M. Mate and D. Pocker, IEEE Trans. Magn. 34 (1998) 1774.

    Google Scholar 

  23. R.J. Waltman, D.J. Pocker and G.W. Tyndall, Tribol. Lett. 4 (1998) 267.

    Google Scholar 

  24. H.I. Kim, C.M. Mate, K.A. Hannibal and S.S. Perry, Phys. Rev. Lett. 82, 17 (1999) 3496.

    Google Scholar 

  25. J.O. Hirschfelder, R.B. Bird and E.L. Spotz, Chem. Rev. 44 (1949) 205.

    Google Scholar 

  26. M.J. Stirniman, S.J. Falcone and B. Marchon, Tribol. Lett. 6 (1999) 199.

    Google Scholar 

  27. G. Gianotti, M. Levi and S. Turri, J. Appl. Polym. Sci. 51 (1994) 973.

    Google Scholar 

  28. M.J. Stirniman and S.J. Falcone, Tribol. Lett. 8 (2000) 171.

    Google Scholar 

  29. G.W. Tyndall, R.J. Waltman and D.J. Pocker, Langmuir 14 (1998) 7527.

    Google Scholar 

  30. H. Eyring, J. Chem. Phys. 4 (1936) 283.

    Google Scholar 

  31. Y. Tanaka, N. Nojiri, K. Ohta, H. Kubota and T. Makita, Int. J. Thermophys. 10 (1989) 857.

    Google Scholar 

  32. M.J.R. Cantow, E.M. Barrall Jr., B.A. Wolf and H. Geerissen, J. Polym. Sci. Polym. Phys. 25 (1987) 603.

    Google Scholar 

  33. T.M. O'Connor, M.S. Jhon, C.L. Bauer, B.G. Min, D.Y. Yoon and T.E. Karis, Tribol. Lett. 1 (1995) 219.

    Google Scholar 

  34. G. Adam and J.H. Gibbs, J. Chem. Phys. 1 (1965) 139.

    Google Scholar 

  35. H. Shimizu, M. Tokyuama, S. Imai, S. Nakamura and K. Sakai, IEEE Trans. Magn. 37 (2001) 831.

    Google Scholar 

  36. M. Tatewaki, N. Tsuda and T. Maruyama, IEEE Trans. Magn. 37 (2001) 842.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karis, T., Marchon, B., Flores, V. et al. Lubricant Spin-Off from Magnetic Recording Disks. Tribology Letters 11, 151–159 (2001). https://doi.org/10.1023/A:1012553415639

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012553415639

Navigation