Skip to main content
Log in

On Primitive Cellular Algebras

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

First we define and study the exponentiation of a cellular algebra by a permutation group that is similar to the corresponding operation (the wreath product in primitive action) in permutation group theory. Necessary and sufficient conditions for the resulting cellular algebra to be primitive and Schurian are given. This enables us to construct infinite series of primitive non-Schurian algebras. Also we define and study, for cellular algebras, the notion of a base, which is similar to that for permutation groups. We present an upper bound for the size of an irredundant base of a primitive cellular algebra in terms of the parameters of its standard representation. This produces new upper bounds for the order of the automorphism group of such an algebra and in particular for the order of a primitive permutation group. Finally, we generalize to 2-closed primitive algebras some classical theorems for primitive groups and show that the hypothesis for a primitive algebra to be 2-closed is essential. Bibliography: 16 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Babai, “On the order of uniprimitive permutation groups, ” Ann. Math., 113, 553–568 (1981).

    Google Scholar 

  2. A. E. Brouwer,A. M. Cohen, andA. Neumaier, Distance-Regular Graphs, Springer, Berlin (1989).

    Google Scholar 

  3. P. J. Cameron,C. E. Praeger,J. Saxl, andG. M. Seitz, “On the Sims conjecture and distance-transitive graphs, ” Bull. London Math. Soc., 15, 499–506 (1983).

    Google Scholar 

  4. S. A. Evdokimov,M. Karpinski, andI. N. Ponomarenko, “On a new high dimensional Weisfeiler-Lehman algorithm, ” J. Algebraic Combinatorics, 10, 29–45 (1999).

    Google Scholar 

  5. S. A. Evdokimov andI. N. Ponomarenko, Isomorphism of coloured graphs with slowly increasing multiplicity of Jordan blocks, Research Report No. 85136–CS, University of Bonn (April 1995).

  6. S. A. Evdokimov andI. N. Ponomarenko, “Two inequalities for the parameters of a cellular algebra, ” Zap. Nauchn. Semin. POMI, 240, 82–95 (1997).

    Google Scholar 

  7. S. A. Evdokimov andI. N. Ponomarenko, On Primitive Cellular Algebras, Research Report No. 85168–CS, University of Bonn (February 1997).

  8. I. A. Faradžev,M. H. Klin, andM. E. Muzichuk, “Cellular rings and groups of automorphisms of graphs, ” in: I. A. Faradžev et al. (eds.), Investigations in Algebraic Theory of Combinatorial Objects, Kluwer, Dordrecht (1994), pp. 1–152.

    Google Scholar 

  9. D. G. Higman, “Coherent algebras, ” Linear Algebra Appl., 93, 209–240 (1987)/

    Google Scholar 

  10. J. S. Leon, “An algorithm for computing the automorphism group of a Hadamard matrix, ” J. Combin. Theory, A27, 289–306 (1979).

    Google Scholar 

  11. G. R. Robinson, “On the base size and rank of a primitive permutation group, ” J. Algebra, 187, 320–321 (1997).

    Google Scholar 

  12. C. C. Sims, “Computation with permutation groups, ” in: Proc. Second Symp. on Symbolic and Alg. Manip., ACM, New York (1971).

    Google Scholar 

  13. B. Weisfeiler (ed.), “On the construction and identification of graphs, ” Lect. Notes Math., 558 (1976).

  14. H. Weyl, Classical Groups. Their Invariants and Representations (1939).

  15. H. Wielandt, Finite Permutation Groups, Academic Press, New York-London (1964).

    Google Scholar 

  16. H. Wielandt, Permutation Groups Through Invariant Relations and Invariant Functions, Lect. Notes Dept. Math. Ohio State Univ., Columbus (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evdokimov, S.A., Ponomarenko, I.N. On Primitive Cellular Algebras. Journal of Mathematical Sciences 107, 4172–4191 (2001). https://doi.org/10.1023/A:1012417522987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012417522987

Keywords

Navigation