Skip to main content
Log in

Recombinational Rearrangements in Bacterial Genome and Bacterial Adaptation to the Environment

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The rearrangement of bacterial chromosomes induced by intragenomic recombination is considered. The role of stochastic and programmed genome rearrangements in bacterial adaptation to the environment and in cell differentiation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R.P. and Roth, J.R., Tandem Genetic Duplication in Phage and Bacteria, Annu. Rev. Microbiol., 1977, vol. 31, pp. 473–505.

    Google Scholar 

  2. Vel'kov, V.V., Gene Amplification in Prokaryotic and Eukaryotic Systems, Genetika, 1982, vol. 18, no. 4, pp. 529–543.

    Google Scholar 

  3. Petes, T.D. and Hill, C., Recombination between Repeated Genes in Microorganisms, Annu. Rev. Genet., 1988, vol. 22, pp. 147–168.

    Google Scholar 

  4. Roth, J.B., Benson, N., Galitski, T., Haak, K., Jeffrey, L., and Misel, L., Rearrangement of the Bacterial Chromosome: Formation and Applications, Escherichia coli and Salmonella: Cellular and Molecular Biology, Neighardt, F.C., Ed., Washington: ASM, 1996, pp. 2256–2276.

    Google Scholar 

  5. Nash, H.A., Site-Specific Recombination: Integration, Excision, Resolution, and Insertion of Defined DNA Segments, Escherichia coli and Salmonella: Cellular and Molecular Biology, Neighardt, F.C., Ed., Washington: ASM, 1996, pp. 2363–2376.

    Google Scholar 

  6. Levinson, G. and Gutman, G., Slipped-Strand Mispairing: A Major Mechanism for DNA Sequence Evolution, Mol. Biol. Evol., 1987, vol. 4, no. 3, pp. 203–221.

    Google Scholar 

  7. Horiuchi, T., Horiuchi, S., and Novick, A., The Genetic Basis of Hypersynthesis of beta-Galactosidase, Genetics, 1963, vol. 48, no. 1, pp. 157–169.

    Google Scholar 

  8. Langridge, J. and Cambell, J., Classification and Intragenic Position of Mutations in the beta-Galactosidase Gene of Escherichia coli, Mol. Gen. Genet., 1969, vol. 103, no. 2, pp. 339–347.

    Google Scholar 

  9. Tilsty, D., Albertini, A., and Miller, J., Gene Amplification in the lac Region of E. coli, Cell, 1984, vol. 37, no. 1, pp. 217–224.

    Google Scholar 

  10. Sonti, R.V. and Roth, J.R., Role of Gene Duplication in the Adaptation of Salmonella typhimurium to Growth on Limiting Carbon Sources, Genetics, 1989, vol. 123, no. 1, pp. 19–28.

    Google Scholar 

  11. Young, M., Gene Amplification in Bacillus subtilis, J. Gen. Microbiol., 1984, vol. 130, no. 7, pp. 1613–1621.

    Google Scholar 

  12. Khasanov, F.K., Bashkirov, V.I., and Prozorov, A.A., Amplification of Plasmid DNA Integrated into the Bacillus subtilis Chromosome, Genetika, 1987, vol. 23, no. 1, pp. 14–20.

    Google Scholar 

  13. Romero, D. and Palacios, R., Gene Amplification and Genomic Plasticity in Procaryotes, Annu. Rev. Genet., 1997, vol. 31, pp. 91–111.

    Google Scholar 

  14. Strauss, D.S. and Strauss, L.D., Large Overlapping Tandem Genetic Duplications in Salmonella typhimurium, J. Mol. Biol. (Moscow), 1976, vol. 103, no. 1, pp. 143–154.

    Google Scholar 

  15. Lin, R.-J., Capage, M., and Hill, C., A Repetitive DNA Sequence, rhs, Responsible for Duplications within the Escherichia coli K-12 Chromosome, J. Mol. Biol., 1984, vol. 177, no. 1, pp. 1–18.

    Google Scholar 

  16. Haack, K. and Roth, J.R., Recombination between Chromosomal IS2000 Elements Supports Frequent Duplication Formation in Salmonella typhimurium, Genetics, 1995, vol. 141, no. 4, pp. 1245–1252.

    Google Scholar 

  17. Mekalonos, J.J., Duplication and Amplification of Toxin Genes in Vibrio cholerae, Cell, 1983, vol. 35, no. 1, pp. 253–263.

    Google Scholar 

  18. Goldberg, I. and Mekalonos, J.J., Effect of a recA Mutation on Cholerae Toxin Gene Amplification and Deletion Events, J. Bacteriol., 1986, vol. 165, no. 3, pp. 723–731.

    Google Scholar 

  19. Khesin, R.B., Nepostoyanstvo genoma (Genome Instability), Moscow: Nauka, 1985.

    Google Scholar 

  20. Sukhodolets, V.V., Principles of the Prokaryotic Genome Organization, Genetika, 1992, vol. 28, no. 1, pp. 28–37.

    Google Scholar 

  21. Thompson, C., Creation of Immunoglobulin Diversity by Intrachromosomal Gene Conversion, Trends Genet., 1992, vol. 8, no. 12, pp. 416–422.

    Google Scholar 

  22. Macnab, R.M., Flagella and Motility, Escherichia coli and Salmonella: Cellular and Molecular Biology, Neighardt, F.C., Ed., Washington: ASM, 1996, pp. 123–145.

    Google Scholar 

  23. Lederberg, J. and Iino, T., Phase Variation in Salmonella, Genetics, 1956, vol. 41, no. 6, pp. 743–757.

    Google Scholar 

  24. Zieg, J., Silverman, M., Hilmen, M., and Simon, M., Recombinational Switch for Gene Expression, Science, 1977, vol. 196, no. 4286, pp. 170–172.

    Google Scholar 

  25. Henrichsen, J., Twitching Motility, Annu. Rev. Microbiol., 1983, vol. 37, pp. 81–93.

    Google Scholar 

  26. Low, D., Braaten, B., and van der Woude, M., Fimbriae, Escherichia coli and Salmonella: Cellular and Molecular Biology, Neighardt, F.C., Ed., Washington: ASM, 1996, pp. 146–157.

    Google Scholar 

  27. Swanson, J., Robbins, K., Barrera, O., Corwin, D., Boslego, J., Ciak, J., Blake, M., and Koomey, J., Gonococcal Pilin Variants in Experimental Gonorrhea, J. Exp. Med., 1987, vol. 165, no. 5, pp. 1344–1357.

    Google Scholar 

  28. Seifert, H.S. and So, M., Genetic Mechanism of Bacterial Antigenic Variation, Microbiol. Rev., 1988, vol. 52, no. 3, pp. 327–336.

    Google Scholar 

  29. Saunders, J., Modulating Bacterial Virulence, Nature, 1989, vol. 338, no. 6217, pp. 455–482.

    Google Scholar 

  30. Di Rita, V. and Mekalanos, J.J., Genetic Regulation of Bacterial Virulence, Annu. Rev. Genet., 1989, vol. 23, pp. 455–482.

    Google Scholar 

  31. Robertson, B.D. and Meyer, T., Genetic Variation in Pathogenic Bacteria, Trends Genet., 1992, vol. 8, no. 12, pp. 422–427.

    Google Scholar 

  32. Moxon, E., Rainey, P., Nowak, M., and Lenski, R., Adaptive Evolution of Highly Mutable Loci in Pathogenic Bacteria, Curr. Biol., 1994, vol. 4, no. 1, pp. 24–33.

    Google Scholar 

  33. Seifert, H.S., Question about Gonococcal Pilus Phase and Antigenic Variation, Mol. Microbiol., 1996, vol. 21, no. 3, pp. 433–440.

    Google Scholar 

  34. Haas, R. and Meyer, T., The Repertoire of Silent Pilus Genes in Neisseria gonorrhoeae: Evidence for Gene Conversion, Cell, 1986, vol. 44, no. 1, pp. 107–115.

    Google Scholar 

  35. Perry, A., Nicolson, L., and Saunders, J., Structural Analysis of the pilE Region of Neisseria gonorrhoeae P9, Gene, 1987, vol. 60, no. 1, pp. 85–92.

    Google Scholar 

  36. Swanson, J., Bergstrom, S., Robbins, K., Barrera, O., Corwin, D., and Koomey, J., Gene Conversion Involving the Pilin Structural Gene Correlates with Pilus–Lilus Changes in Neisseria gonorrhoeae, Cell, 1986, vol. 47, no. 2, pp. 267–276.

    Google Scholar 

  37. Koomey, M., Gotschlich, E., Robbins, K., Bergstrom, S., and Swanson, J., Effect of recA Mutations on Pilus Antigenic Variation and Phase Transitions in Neisseria gonorrhoeae, Genetics, 1987, vol. 117, no. 3, pp. 391–398.

    Google Scholar 

  38. Chaussee, M., Wilson, J., and Hill, S.A., Characterization of the redD Gene of Neisseria gonorrhoeae MS11 and the Effect of redD Inactivation on Pilin Variation and DNA Transformation, Microbiology, 1999, vol. 145, no. 2, pp. 389–400.

    Google Scholar 

  39. Barten, R. and Meyer, T., Neisseria gonorrhoeae Reverse Transcriptase Activity Does Not Mediate Pilin Gene Conversion, Mol. Microbiol., 1997, vol. 24, no. 3, pp. 667–669.

    Google Scholar 

  40. Prozorov, A.A., Absorption of DNA by Bacterial Cells: Natural Process and Laboratory Approaches, Genetika, 1998, vol. 34, no. 5, pp. 581–592.

    Google Scholar 

  41. Gibbs, C., Reiman, B.-Y., Schultz, E., Kaufmann, A., Haas, R., and Meyer, T., Reassortment of Pilin Genes in Neisseria gonorrhoeae Occurs by Two Distinct Mechanisms, Nature, 1989, vol. 338, no. 6217, pp. 651–652.

    Google Scholar 

  42. Swanson, J., Belland, R., and Hill, S., Neisserial Surface Variation: How and Why?, Curr. Opin. Gen. Develop., 1992, vol. 2, no. 4, pp. 805–811.

    Google Scholar 

  43. Weber, A., Harris, K., Lohrke, S., Forney, L., and Smith, A., Inability to Express Fimbriae Results in Impaired Ability of Haemophilus influenzae B to Colonize the Nasopharynx, Infect. Immun., 1991, vol. 59, no. 11, pp. 4724–4728.

    Google Scholar 

  44. Van Ham, M., van Alphen, L., Mooi, F., and van Putten, J., Phase Variation of H. influenzae Fimbriae: Transcriptional Control of Two Divergent Genes through a Variable Combined Promoter Region, Cell, 1993, vol. 73, no. 6, pp. 1187–1196.

    Google Scholar 

  45. Martinez, J., Mulvey, M.A., Schilling, J., Pinkner, J., and Hultgren, S., Type 1 Pilus–mediated Bacterial Invasion of Bladder Epithelial Cells, EMBO J., vol. 19, no. 12, pp. 2803–2812.

  46. Kubasekara, H.D. and Blomfield, I., The Molecular Basis for the Specificity of fimE in the Phase Variation of Type I Fimbriae of Escherichia coli K-12, Mol. Microbiol., 1999, vol. 31, no. 4, pp. 1171–1181.

    Google Scholar 

  47. Freitag, C., Abraham, J., Clements, J., and Eisenstein, B., Genetic Analysis of the Phase Variation Control of Expression of Type 1 Fimbriae in Escherichia coli, J. Bacteriol., 1985, vol. 162, no. 3, pp. 668–675.

    Google Scholar 

  48. Abraham, J., Freitag, C., Clements, J., and Eisenstein, B., An Invertible Element of DNA Controls Phase Variation of Type 1 Fimbriae of Escherichia coli, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, no. 10, pp. 5724–5727.

    Google Scholar 

  49. Mc Clain, M., Blomfield, K., and Eisenstein, B., Roles of fimB and fimE in Site-Specific DNA Inversion Associated with Phase Variation of Type 1 Fimbriae in Escherichia coli, J. Bacteriol., 1991, vol. 173, no. 9, pp. 5308–5314.

    Google Scholar 

  50. Blomfield, I., Kulasekara, D., and Eisenstein, B., Integration Host Factor Stimulates Both fimB-and fimEmediated Site-Specific DNA Insertion That Controls Phase Variation of Type 1 Fimbriae Expression in Escherichia coli, Mol. Microbiol., 1997, vol. 23, no. 4, pp. 705–717.

    Google Scholar 

  51. Mobley, H. and Belas, R., Swarming and Pathogenicity of Proteus mirabilis in the Urinary Tract, Trends Microbiol., 1995, vol. 3, no. 2, pp. 280–284.

    Google Scholar 

  52. Zhao, H., Li, X., Johnson, D., Blomfield, I., and Mobley, H., In Vivo Phase Variation of MR/P Fimbrial Gene Expression in Proteus mirabilis Infecting the Urinary Tract, Mol. Microbiol., 1997, vol. 23, no. 5, pp. 1009–1019.

    Google Scholar 

  53. Marrs, C., Ruchl, W., Schoolnik, G., and Falkow, S., Pilin Gene Phase Variation of Moraxella bovis Is Caused by an Inversion of the Pilin Genes, J. Bacteriol., 1998, vol. 170, no. 7, pp. 3032–3039.

    Google Scholar 

  54. Stern, A. and Meyer, T., Common Mechanism Controlling Phase and Antigen Variation in Pathogenic Neisseria, Mol. Microbiol., 1987, vol. 1, pp. 5–12.

    Google Scholar 

  55. Murphy, G., Connel, T., Barrits, D., Koomey, M., and Cannon, J., Phase Variation of Gonococcal Protein 2: Regulation of Gene Expression by Slipped-Strand Mispairing of a Repetitive DNA Sequence, Cell, 1989, vol. 56, no. 4, pp. 539–547.

    Google Scholar 

  56. Meyer, T.F., Gibbs, C.P., and Haas, R., Variation and Control of Protein Expression in Neisseria, Annu. Rev. Microbiol., 1990, vol. 44, pp. 451–477.

    Google Scholar 

  57. Plasterk, R., Simon, M., and Barbour, A., Transposition of Structural Genes to an Expression Sequence on a Plasmid Causes Antigenic Variation in the Bacterium Borrelia hermsii, Nature, 1985, vol. 318, no. 1315, pp. 257–263.

    Google Scholar 

  58. Yogev, D., Rosengarten, R., Watson-McKown, R., and Wise, K., Molecular Basis of Mycoplasma Surface Variation: A Novel Set of Divergent Genes Undergo Spontaneous Mutation of Periodic Coding Regions and 5' Regulatory Sequences, EMBO J., 1991, vol. 10, no. 10, pp. 4069–4079.

    Google Scholar 

  59. Weiser, J., Chong, S., Greenberg, D., and Fong, W., Identification and Characterization of a Cell Envelope Protein of Haemophilus influenzae Contributing to Phase Variation in Colony Opacity and Nasopharyngeal Colonization, Mol. Microbiol., 1995, vol. 17, no. 3, pp. 555–564.

    Google Scholar 

  60. Weiser, J. and Pan, N., Adaptation of Haemophilus influenzae to Acquired and Innate Humoral Immunity on Phase Variation of Lipopolysaccharide, Mol. Microbiol., 1998, vol. 30, no. 4, pp. 767–775.

    Google Scholar 

  61. Weiser, J., Love, J., and Moxon, E., Molecular Mechanism of Phase Variation of H. influenzae Lipopolysaccharide Epitopes, Cell, 1989, vol. 59, no. 3, pp. 657–665.

    Google Scholar 

  62. Weiser, J., Maskell, D., Butler, P., Lindberg, A., and Moxon, E.D., Characterization of Repetitive Controlling Phase Variation of Haemophilus influenzae Lipopolysaccharide, J. Bacteriol., 1990, vol. 172, no. 6, pp. 3304–3309.

    Google Scholar 

  63. Weiser, J., Schepetov, M., and Chong, S., Decoration of Lipopolysaccharide with Phosphorylcholine: A Phase-Variable Characteristic of Haemophilus influenzae, Infect. Immun., 1997, vol. 65, no. 5, pp. 943–950.

    Google Scholar 

  64. Kroll, J., Loynds, B., and Moxon, E.R., The Haemophilus influenzae Capsulation Gene Cluster: A Compound Transposon, Mol. Microbiol., 1991, vol. 5, no. 8, pp. 1549–1560.

    Google Scholar 

  65. Kroll, J. and Moxon, E.R., Capsulation and Gene Copy Number at the cap Locus of Haemophilus influenzae Type B, J. Bacteriol., 1988, vol. 170, no. 2, pp. 859–864.

    Google Scholar 

  66. Hoiseth, S., Moxon, E.R., and Silver, R., Genes Involved in Haemophilus influenzae Type B Capsule Expression Are Part of an 18-Kilobase Tandem Duplication, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, no. 4, pp. 1106–1110.

    Google Scholar 

  67. Kunkel, B., Losick, R., and Stragier, P., The Bacillus subtilis Gene for the Developmental Transcription Factor Is Generated by Excision of a Dispensable DNA Element Containing a Sporulation Recombinase Gene, Genes Dev., 1990, vol. 4, no. 4, pp. 525–535.

    Google Scholar 

  68. Erringron, J., Rong, S., Rozenkrantz, M., and Sonenshein, A., Transcriptional Regulation and Structure of the Bacillus subtilis Sporulation Locus spoIIIC, J. Bacteriol., 1988, vol. 170, no. 3, pp. 1162–1167.

    Google Scholar 

  69. Stragier, P., Kunkel, B., Kroos, L., and Losick, R., Chromosomal Rearrangement Generating a Composite Gene for a Developmental Transcription Factor, Science, 1989, vol. 243, no. 4890, pp. 507–512.

    Google Scholar 

  70. Takemaru, K., Mizuno, M., Sato, T., Takeuchi, M., and Kobayashi, Y., Complete Nucleotide Sequence of a Skin Element Excised by DNA Rearrangement during Sporulation in Bacillus subtilis, Microbiology, 1995, vol. 141, no. 2, pp. 323–327.

    Google Scholar 

  71. Krogh, S., O'Reilly, M., Nolan, N., and Devine, K.M., The Phage-Like Element PBSX and Part of the Skin Element, Which Are Resident at Different Locations on the Bacillus subtilis Chromosome, Are Highly Homologous, Microbiology, 1996, vol. 142, no. 10, pp. 2031–2040.

    Google Scholar 

  72. Sato, T. and Kobayashi, Y., The ars Operon in the Skin Element of Bacillus subtilis Confers Resistance to Arsenate and Arsenite, J. Bacteriol., 1988, vol. 180, no. 7, pp. 1655–1661.

    Google Scholar 

  73. Sato, T., Samori, Y., and Kobayashi, Y., The cisA Cistron of Bacillus subtilis Sporulation Gene spoCA Encodes a Protein Homologous to a Site-Specific Recombinase, J. Bacteriol., 1990, vol. 172, no. 2, pp. 1092–1098.

    Google Scholar 

  74. Haselkorn, R., Golden, S.W., Lammers, P., and Mulligan, M.E., Developmental Rearrangement of Cyanobacterial Nitrogen-Fixation Genes, Trends Genet., vol. 2, no. 10, pp. 255–259.

  75. Golden, J., Robinson, S., and Haselkorn, R., Rearrangement of Nitrogen Fixation Genes during Heterocyst Differentiation in the Cyanobacterium Anabaena, Nature, 1985, vol. 314, no. 6010, pp. 419–423.

    Google Scholar 

  76. Lammers, P.J., Golden, J.W., and Haselkorn, R., Identification and Sequence of a Gene Required for a Developmentally Regulated DNA Excision in Anabaena, Cell, 1986, vol. 44, no. 4, pp. 905–911.

    Google Scholar 

  77. Golden, J., Milligan, M.E., and Haselkorn, R., Different Recombination Site Specificity of Two Developmentally Regulated Genome Rearrangements, Nature, 1987, vol. 327, no. 6122, pp. 526–529.

    Google Scholar 

  78. Golden, J., Carraso, C.D., Mulligan, M.E., Schneiders, G., and Haselkorn, R., Deletion of a 55-Kilobase-Pair DNA Element from the Chromosome during Heterocyst Differentiation of Anabaena sp. Strain PCC 7120, J. Bacteriol., 1988, vol. 170, no. 11, pp. 5034–5041.

    Google Scholar 

  79. Haselkorn, R., Developmentally Regulated Gene Rearrangements in Procaryotes, Annu. Rev. Genet., 1992, vol. 26, pp. 113–130.

    Google Scholar 

  80. Buikema, W. and Haselkorn, R., Molecular Genetics of Cyanobacterial Development, Annu. Rev. Plant Physiol., 1993, vol. 44, pp. 33–52.

    Google Scholar 

  81. Wolk, C.P., Heterocyst Formation in Anabaena, Prokaryotic Development, Brun, Y. and Scimkert, L., Ed., Washington: Am. Soc. Microbiol., 2000, pp. 83–104.

    Google Scholar 

  82. Akif'ev, A.P., Grishanin, A.K., and Degtyarev, S.V., Chromatin Diminution Accompanied by the Molecular Rearrangement of Genome, Genetika, 1998, vol. 34, no. 6, pp. 709–718.

    Google Scholar 

  83. Borst, P. and Greaves, D., Programmed Gene Rearrangements Altering Gene Expression, Science, 1987, vol. 235, no. 4789, pp. 658–667.

    Google Scholar 

  84. Plasterk, R., Genetic Switches: Mechanism and Function, Trends Genet., 1992, vol. 8, no. 12, pp. 403–406.

    Google Scholar 

  85. Rainey, P.B. and Moxon, E.R., Unusual Mutation Mechanisms and Evolution, Science, 1993, vol. 260, no. 5116, p. 1958.

    Google Scholar 

  86. Henderson, I.R., Owen, P., and Nataro, I., Molecular Switches: The ON and OFF of Bacterial Phase Variation, Mol. Microbiol., 1999, vol. 33, no. 5, pp. 919–932.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prozorov, A.A. Recombinational Rearrangements in Bacterial Genome and Bacterial Adaptation to the Environment. Microbiology 70, 501–512 (2001). https://doi.org/10.1023/A:1012301117863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012301117863

Keywords

Navigation