Skip to main content
Log in

Adsorbing and Collapsing Directed Animals

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A model of a self-interacting directed animal, which also interacts with a solid wall, is studied as a model of a directed branched polymer which can undergo both a collapse and an adsorption transition. The directed animal is confined to a 45° wedge, and it interacts with one of the walls of this wedge. The existence of a thermodynamic limit in this model shown, and the presence of an adsorption transition is demonstrated by using constructive techniques. By comparing this model to a process of directed percolation, we show that there is also a collapse or θ-transition in this model. We examine directed percolation in a wedge to show that there is a collapse phase present for arbitrary large values of the adsorption activity. The generating function of adsorbing directed animals in a half-space is found next from which we find the tricritical exponents associated with the adsorption transition. A full solution for a collapsing directed animal seems intractible, so instead we examine the collapse transition of a model of column convex directed animals with a contact activity next.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. T. Batchelor and C. M. Yung, Phys. Rev. Lett. 74:2026 (1995).

    Google Scholar 

  2. J. Betrema and J.-G. Penaud, Theor. Comp. Sci. 117:67 (1993).

    Google Scholar 

  3. M. Bousquet-Melou, J. Phys. A: Math. Gen. 25:1925 (1992).

    Google Scholar 

  4. M. Bousquet-Melou, Disc. Appl. Math. 48:21 (1994).

    Google Scholar 

  5. M. Bousquet-Melou, Disc. Math. 154:1 (1996).

    Google Scholar 

  6. M. Bousquet-Melou, Rapport d'habilitation, LaBRI Universite Bordeaux 1 (1996a).

  7. M. Bousquet-Melou, Disc. Math. 180:73 (1998).

    Google Scholar 

  8. M. Bousquet-Melou and A. Rechnitzer, submitted to Disc. Math. (2000).

  9. R. Brak, J. M. Essam, and A. L. Owczarek, J. Stat. Phys. 93:155 (1998).

    Google Scholar 

  10. R. Brak, A. J. Guttmann, and S. G. Whittington, J. Math. Chem. 8:255 (1991).

    Google Scholar 

  11. R. Brak, A. J. Guttmann, and S. G. Whittington, J. Phys. A: Math. Gen. 25:2437 (1992).

    Google Scholar 

  12. R. Brak, A. L. Owczarek, and T. Prellberg, J. Stat. Phys. 76:1101 (1994).

    Google Scholar 

  13. J. L. Cardy, Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987), p. 55.

    Google Scholar 

  14. M. C. T. P. Carvalho and V. Privman, J. Phys. A: Math. Gen. 21 L1033 (1988).

    Google Scholar 

  15. K. De'Bell and T. Lookman, Rev. Mod. Phys. 65:87 (1993).

    Google Scholar 

  16. B. Derrida and H. J. Hermann, J. Physique 46:1365 (1983).

    Google Scholar 

  17. D. Dhar, Phys. Rev. Lett. 49:959 (1982).

    Google Scholar 

  18. D. Dhar, Phys. Rev. Lett. 51:853 (1983).

    Google Scholar 

  19. C. Domb, J. Phys. A: Math. Gen. 9:L141 (1976).

    Google Scholar 

  20. B. Duplantier and H. Saleur, Rev. 57:3179 (1986).

    Google Scholar 

  21. E. Eisenreigler, J. Chem. Phys. 79:1052 (1983).

    Google Scholar 

  22. E. Eisenreigler, J. Chem. Phys. 82:1032 (1985).

    Google Scholar 

  23. E. Eisenreigler, K. Kremer, and K. Binder, J. Chem. Phys. 77:6296 (1982).

    Google Scholar 

  24. R. S. Ellis, Entropy, Large Deviations and Statistical Mechanics (Springer, New York, 1985).

    Google Scholar 

  25. M. E. Fisher, J. Stat. Phys. 34:667 (1984).

    Google Scholar 

  26. P. Flajolet and R. Sedgewick, Analytic Combinatorics: Functional Equations, Rational and Algebraic Functions, INRIA Rapport de recherche No. 4103 (2001).

  27. S. Flesia and D. S. Gaunt, J. Phys. A: Math. Gen. 25:2127 (1992).

    Google Scholar 

  28. S. Flesia, D. S. Gaunt, C. Soteros, and S. G. Whittington, J. Phys. A: Math. Gen. 25:3515 (1992).

    Google Scholar 

  29. S. Flesia, D. S. Gaunt, C. Soteros, and S. G. Whittington, J. Phys. A: Math. Gen. 26:L993 (1993).

    Google Scholar 

  30. S. Flesia, D. S. Gaunt, C. Soteros, and S. G. Whittington, J. Phys. A: Math. Gen. 27:5831 (1994).

    Google Scholar 

  31. D. S. Gaunt and S. Flesia, Physica A 168:602 (1990).

    Google Scholar 

  32. D. S. Gaunt and S. Flesia, J. Phys. A: Math. Gen. 24:3655 (1991).

    Google Scholar 

  33. G. Grimmett, Percolation (Springer, Berlin, 1989).

    Google Scholar 

  34. J. M. Hammersley, Math. Proc. Camb. Phil. Soc. 56:642 (1957).

    Google Scholar 

  35. J. M. Hammersley, Math. Proc. Camb. Phil. Soc. 57:516 (1961).

    Google Scholar 

  36. J. M. Hammersley, G. M. Torrie, and S. G. Whittington, J. Phys. A: Math. Gen. 15:539 (1982).

    Google Scholar 

  37. J. M. Hammersley and S. G. Whittington, J. Phys. A: Math. Gen. 18:101 (1985).

    Google Scholar 

  38. F. Harary, MagyarTud. Akad. Mat. Kutató Intezetenek Kozlemanyei 5:63 (1960).

    Google Scholar 

  39. Hille, Functional Analysis and Semi-Groups. AMS Colloquim Publications, Vol. 31, American Mathematical Society (Providence, Rhode Island, 1948).

    Google Scholar 

  40. E. J. Janse van Rensburg, J. Phys. A: Math. Gen. 31:8295 (1998).

    Google Scholar 

  41. E. J. Janse van Rensburg, Ann. Comb. 3:451 (1999).

    Google Scholar 

  42. E. J. Janse van Rensburg, J. Phys. A: Math. Gen. 33:3653 (2000).

    Google Scholar 

  43. E. J. Janse van Rensburg, The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles, Oxford Series in Mathematics and Its Applications, Vol. 18 (Oxford University Press, 2000a).

  44. E. J. Janse van Rensburg, J. Phys. A: Math. Gen. 33:3653 (2000b).

    Google Scholar 

  45. E. J. Janse van Rensburg and S. You, J. Phys. A: Math. Gen. 31:8635 (1998).

    Google Scholar 

  46. D. Klarner, Fibonacci Quart. 3:9 (1965).

    Google Scholar 

  47. D. Klarner, Can. J. Math. 19:851 (1967).

    Google Scholar 

  48. T. C. Lubensky and J. Isaacson, Phys. Rev. 20:2130 (1979).

    Google Scholar 

  49. G. Pólya, J. Comb. Theo. 6:102 (1969).

    Google Scholar 

  50. T. Prellberg and R. Brak, J. Stat. Phys. 78:701 (1995).

    Google Scholar 

  51. V. Privman, G. Forgacs, and H. L. Frisch, (1988). Phys. Rev. B 37:9897.

    Google Scholar 

  52. V. Privman and N. M. Švrakić, J. Stat. Phys. 51:1091 (1988).

    Google Scholar 

  53. V. Privman and N. M. Švrakić, Phys. Rev. Lett. 60:1107 (1988a).

    Google Scholar 

  54. A. Rechnitzer, Some Problems in the Counting of Lattice Animals, Polyominoes, Polygons and Walks, Ph.D. thesis (University of Melbourne, 2000).

  55. D. Stauffer, Phys. Rep. 54:1 (1979).

    Google Scholar 

  56. G. X. Viennot, Combinatoire énumérative, G. Labelle and P. Leroux, eds., Lect. Notes in Math., Vol. 1234 (1985).

  57. S. You and E. J. Janse van Rensburg, J. Phys. A: Math. Gen. 33:1171 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Rensburg, E.J.J., Rechnitzer, A. Adsorbing and Collapsing Directed Animals. Journal of Statistical Physics 105, 49–91 (2001). https://doi.org/10.1023/A:1012225909169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012225909169

Navigation